57
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Cardiovascular, neurological, and pulmonary events following vaccination with the BNT162b2, ChAdOx1 nCoV-19, and Ad26.COV2.S vaccines: An analysis of European data

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The ChAdOx1 nCoV-19 (ChA) (AstraZeneca) and Ad26.COV2.S (AD26) (Janssen) vaccines are virus-based coronavirus disease 2019 (COVID-19) vaccines used worldwide. In spring 2021, venous blood clots and thrombocytopenia were described in some vaccine recipients. We evaluated the frequency of severe adverse events (SAEs) documented in the EudraVigilance European database in young adult (18–64 years old) and older (≥65 years old) vaccine recipients up to 23 June 2021 and related them to coagulation disorders and arterial, cardiac, and nervous system events. Comparison between the frequency of SAEs and SAE-related deaths in ChA and AD26 vs. BNT162b2 COVID-19 (BNT) (Pfizer/BioNTech) vaccine recipients demonstrated: 1) ChA and AD26 recipients than BNT recipients had higher frequencies of not only SAEs caused by venous blood clots and hemorrhage, but also thromboembolic disease and arterial events, including myocardial infarction and stroke; 2) a corresponding higher frequency of SAE-related deaths. The frequency was higher in both young adults and older adults. Comparison between the frequency of SAEs and SAE-related deaths in AD26 vs. ChA recipients demonstrated in AD26 recipients: 1) lower frequency of thrombocytopenia; 2) lower frequency of SAEs in young adult recipients; 3) higher frequency of SAEs in older recipients. Interestingly, most of the venous thrombotic SAEs associated with ChA and AD26 vaccines were not associated with thrombocytopenia, suggesting that TTS (thrombosis with thrombocytopenia syndrome) is not the only type of thrombosis observed following virus-based vaccines. In conclusion, both virus-based COVID-19 vaccines show more SAEs than BNT, but the frequency of the SAE type in the different age groups differs, suggesting that the mechanisms responsible of SAEs overlap only partly.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Autoantibodies against type I IFNs in patients with life-threatening COVID-19

          The genetics underlying severe COVID-19 The immune system is complex and involves many genes, including those that encode cytokines known as interferons (IFNs). Individuals that lack specific IFNs can be more susceptible to infectious diseases. Furthermore, the autoantibody system dampens IFN response to prevent damage from pathogen-induced inflammation. Two studies now examine the likelihood that genetics affects the risk of severe coronavirus disease 2019 (COVID-19) through components of this system (see the Perspective by Beck and Aksentijevich). Q. Zhang et al. used a candidate gene approach and identified patients with severe COVID-19 who have mutations in genes involved in the regulation of type I and III IFN immunity. They found enrichment of these genes in patients and conclude that genetics may determine the clinical course of the infection. Bastard et al. identified individuals with high titers of neutralizing autoantibodies against type I IFN-α2 and IFN-ω in about 10% of patients with severe COVID-19 pneumonia. These autoantibodies were not found either in infected people who were asymptomatic or had milder phenotype or in healthy individuals. Together, these studies identify a means by which individuals at highest risk of life-threatening COVID-19 can be identified. Science, this issue p. eabd4570, p. eabd4585; see also p. 404
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            BNT162b2 mRNA Covid-19 Vaccine in a Nationwide Mass Vaccination Setting

            Abstract Background As mass vaccination campaigns against coronavirus disease 2019 (Covid-19) commence worldwide, vaccine effectiveness needs to be assessed for a range of outcomes across diverse populations in a noncontrolled setting. In this study, data from Israel’s largest health care organization were used to evaluate the effectiveness of the BNT162b2 mRNA vaccine. Methods All persons who were newly vaccinated during the period from December 20, 2020, to February 1, 2021, were matched to unvaccinated controls in a 1:1 ratio according to demographic and clinical characteristics. Study outcomes included documented infection with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), symptomatic Covid-19, Covid-19–related hospitalization, severe illness, and death. We estimated vaccine effectiveness for each outcome as one minus the risk ratio, using the Kaplan–Meier estimator. Results Each study group included 596,618 persons. Estimated vaccine effectiveness for the study outcomes at days 14 through 20 after the first dose and at 7 or more days after the second dose was as follows: for documented infection, 46% (95% confidence interval [CI], 40 to 51) and 92% (95% CI, 88 to 95); for symptomatic Covid-19, 57% (95% CI, 50 to 63) and 94% (95% CI, 87 to 98); for hospitalization, 74% (95% CI, 56 to 86) and 87% (95% CI, 55 to 100); and for severe disease, 62% (95% CI, 39 to 80) and 92% (95% CI, 75 to 100), respectively. Estimated effectiveness in preventing death from Covid-19 was 72% (95% CI, 19 to 100) for days 14 through 20 after the first dose. Estimated effectiveness in specific subpopulations assessed for documented infection and symptomatic Covid-19 was consistent across age groups, with potentially slightly lower effectiveness in persons with multiple coexisting conditions. Conclusions This study in a nationwide mass vaccination setting suggests that the BNT162b2 mRNA vaccine is effective for a wide range of Covid-19–related outcomes, a finding consistent with that of the randomized trial.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Thrombotic Thrombocytopenia after ChAdOx1 nCov-19 Vaccination

              Background Several cases of unusual thrombotic events and thrombocytopenia have developed after vaccination with the recombinant adenoviral vector encoding the spike protein antigen of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (ChAdOx1 nCov-19, AstraZeneca). More data were needed on the pathogenesis of this unusual clotting disorder. Methods We assessed the clinical and laboratory features of 11 patients in Germany and Austria in whom thrombosis or thrombocytopenia had developed after vaccination with ChAdOx1 nCov-19. We used a standard enzyme-linked immunosorbent assay to detect platelet factor 4 (PF4)–heparin antibodies and a modified (PF4-enhanced) platelet-activation test to detect platelet-activating antibodies under various reaction conditions. Included in this testing were samples from patients who had blood samples referred for investigation of vaccine-associated thrombotic events, with 28 testing positive on a screening PF4–heparin immunoassay. Results Of the 11 original patients, 9 were women, with a median age of 36 years (range, 22 to 49). Beginning 5 to 16 days after vaccination, the patients presented with one or more thrombotic events, with the exception of 1 patient, who presented with fatal intracranial hemorrhage. Of the patients with one or more thrombotic events, 9 had cerebral venous thrombosis, 3 had splanchnic-vein thrombosis, 3 had pulmonary embolism, and 4 had other thromboses; of these patients, 6 died. Five patients had disseminated intravascular coagulation. None of the patients had received heparin before symptom onset. All 28 patients who tested positive for antibodies against PF4–heparin tested positive on the platelet-activation assay in the presence of PF4 independent of heparin. Platelet activation was inhibited by high levels of heparin, Fc receptor–blocking monoclonal antibody, and immune globulin (10 mg per milliliter). Additional studies with PF4 or PF4–heparin affinity purified antibodies in 2 patients confirmed PF4-dependent platelet activation. Conclusions Vaccination with ChAdOx1 nCov-19 can result in the rare development of immune thrombotic thrombocytopenia mediated by platelet-activating antibodies against PF4, which clinically mimics autoimmune heparin-induced thrombocytopenia. (Funded by the German Research Foundation.)
                Bookmark

                Author and article information

                Journal
                J Autoimmun
                J Autoimmun
                Journal of Autoimmunity
                Elsevier Ltd.
                0896-8411
                1095-9157
                26 October 2021
                December 2021
                26 October 2021
                : 125
                : 102742
                Affiliations
                [a ]University of Perugia, Department of Medicine and Surgery, Section of Pharmacology, 06129, Perugia, Italy
                [b ]University of Bari, Department of Pharmacy-Drug Sciences, Section of Pharmacology, 70125, Bari, Italy
                [c ]University of Trieste, Department of Life Sciences, 34127, Trieste, Italy
                Author notes
                []Corresponding author. Section of Pharmacology, Department of Medicine and Surgery, University of Perugia, Severi Square 1, 06129, Perugia, Italy.
                Article
                S0896-8411(21)00150-5 102742
                10.1016/j.jaut.2021.102742
                8547775
                34710832
                037aeea8-f853-46df-9715-356598050de3
                © 2021 Elsevier Ltd. All rights reserved.

                Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.

                History
                : 17 September 2021
                : 7 October 2021
                : 19 October 2021
                Categories
                Article

                Immunology
                virus-based covid-19 vaccines,severe adverse events,venous thrombosis,hemorrhage,myocardial infarction

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content145

                Cited by29

                Most referenced authors1,830