1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      MCANet: A Multi-Branch Network for Cloud/Snow Segmentation in High-Resolution Remote Sensing Images

      , , , ,
      Remote Sensing
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Because clouds and snow block the underlying surface and interfere with the information extracted from an image, the accurate segmentation of cloud/snow regions is essential for imagery preprocessing for remote sensing. Nearly all remote sensing images have a high resolution and contain complex and diverse content, which makes the task of cloud/snow segmentation more difficult. A multi-branch convolutional attention network (MCANet) is suggested in this study. A double-branch structure is adopted, and the spatial information and semantic information in the image are extracted. In this way, the model’s feature extraction ability is improved. Then, a fusion module is suggested to correctly fuse the feature information gathered from several branches. Finally, to address the issue of information loss in the upsampling process, a new decoder module is constructed by combining convolution with a transformer to enhance the recovery ability of image information; meanwhile, the segmentation boundary is repaired to refine the edge information. This paper conducts experiments on the high-resolution remote sensing image cloud/snow detection dataset (CSWV), and conducts generalization experiments on two publicly available datasets (HRC_WHU and L8 SPARCS), and the self-built cloud and cloud shadow dataset. The MIOU scores on the four datasets are 92.736%, 91.649%, 80.253%, and 94.894%, respectively. The experimental findings demonstrate that whether it is for cloud/snow detection or more complex multi-category detection tasks, the network proposed in this paper can completely restore the target details, and it provides a stronger degree of robustness and superior segmentation capabilities.

          Related collections

          Most cited references68

          • Record: found
          • Abstract: not found
          • Book Chapter: not found

          U-Net: Convolutional Networks for Biomedical Image Segmentation

            Bookmark
            • Record: found
            • Abstract: not found
            • Conference Proceedings: not found

            Fully convolutional networks for semantic segmentation

              Bookmark
              • Record: found
              • Abstract: not found
              • Conference Proceedings: not found

              Pyramid Scene Parsing Network

                Bookmark

                Author and article information

                Contributors
                Journal
                Remote Sensing
                Remote Sensing
                MDPI AG
                2072-4292
                February 2023
                February 15 2023
                : 15
                : 4
                : 1055
                Article
                10.3390/rs15041055
                03707033-91bc-42b2-82b5-661b303c3a6d
                © 2023

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article