15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Antitumor potential of a synthetic interferon-alpha/PLGF-2 positive charge peptide hybrid molecule in pancreatic cancer cells

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Pancreatic cancer is the most aggressive malignant disease, ranking as the fourth leading cause of cancer-related death among men and women in the United States. Interferon alpha (IFNα) has been used to treat pancreatic cancer, but its clinical application has been significantly hindered due to the low antitumor activity. We used a “cDNA in-frame fragment library” screening approach to identify short peptides that potentiate the antitumor activity of interferons. A short positively charged peptide derived from the C-terminus of placental growth factor-2 (PLGF-2) was selected to enhance the activity of IFNα. For this, we constructed a synthetic interferon hybrid molecule (SIFα) by fusing the positively charged PLGF-2 peptide to the C-terminus of the human IFNα. Using human pancreatic cell lines (ASPC and CFPAC1) as a model system, we found that SIFα exhibited a significantly higher activity than did the wild-type IFNα in inhibiting the tumor cell growth. The enhanced activity of the synthetic SIFα was associated with the activation of interferon pathway target genes and the increased binding of cell membrane receptor. This study demonstrates the potential of a synthetic SIFα as a novel antitumor agent.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Mechanisms of Cellular Uptake of Cell-Penetrating Peptides

          Recently, much attention has been given to the problem of drug delivery through the cell-membrane in order to treat and manage several diseases. The discovery of cell penetrating peptides (CPPs) represents a major breakthrough for the transport of large-cargo molecules that may be useful in clinical applications. CPPs are rich in basic amino acids such as arginine and lysine and are able to translocate over membranes and gain access to the cell interior. They can deliver large-cargo molecules, such as oligonucleotides, into cells. Endocytosis and direct penetration have been suggested as the two major uptake mechanisms, a subject still under debate. Unresolved questions include the detailed molecular uptake mechanism(s), reasons for cell toxicity, and the delivery efficiency of CPPs for different cargoes. Here, we give a review focused on uptake mechanisms used by CPPs for membrane translocation and certain experimental factors that affect the mechanism(s).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            SMYD3 links lysine methylation of MAP3K2 to Ras-driven cancer

            Deregulation in lysine methylation signaling has emerged as a common etiologic factor in cancer pathogenesis, with inhibitors of several histone lysine methyltransferases (KMTs) being developed as chemotherapeutics 1 . The largely cytoplasmic KMT SMYD3 (SET and MYND domain containing protein 3) is overexpressed in numerous human tumors 2-4 . However, the molecular mechanism by which SMYD3 regulates cancer pathways and its relationship to tumorigenesis in vivo are largely unknown. Here we show that methylation of MAP3K2 by SMYD3 increases MAP Kinase signaling and promotes the formation of Ras-driven carcinomas. Using mouse models for pancreatic ductal adenocarcinoma (PDAC) and lung adenocarcinoma (LAC), we found that abrogating SMYD3 catalytic activity inhibits tumor development in response to oncogenic Ras. We employed protein array technology to identify the MAP3K2 kinase as a target of SMYD3. In cancer cell lines, SMYD3-mediated methylation of MAP3K2 at lysine 260 potentiates activation of the Ras/Raf/MEK/ERK signaling module. Finally, the PP2A phosphatase complex, a key negative regulator of the MAP Kinase pathway, binds to MAP3K2 and this interaction is blocked by methylation. Together, our results elucidate a new role for lysine methylation in integrating cytoplasmic kinase-signaling cascades and establish a pivotal role for SMYD3 in the regulation of oncogenic Ras signaling.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Growth factors engineered for super-affinity to the extracellular matrix enhance tissue healing.

              Growth factors (GFs) are critical in tissue repair, but their translation to clinical use has been modest. Physiologically, GF interactions with extracellular matrix (ECM) components facilitate localized and spatially regulated signaling; therefore, we reasoned that the lack of ECM binding in their clinically used forms could underlie the limited translation. We discovered that a domain in placenta growth factor-2 (PlGF-2(123-144)) binds exceptionally strongly and promiscuously to ECM proteins. By fusing this domain to the GFs vascular endothelial growth factor-A, platelet-derived growth factor-BB, and bone morphogenetic protein-2, we generated engineered GF variants with super-affinity to the ECM. These ECM super-affinity GFs induced repair in rodent models of chronic wounds and bone defects that was greatly enhanced as compared to treatment with the wild-type GFs, demonstrating that this approach may be useful in several regenerative medicine applications.
                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                20 November 2015
                2015
                : 5
                : 16975
                Affiliations
                [1 ]Stem Cell and Cancer Center, First Hospital, Jilin University , Changchun, Jilin 130021, China
                [2 ]Stanford University Medical School, Palo Alto Veterans Institute for Research , Palo Alto, CA 94304, USA
                Author notes
                [*]

                These authors contributed equally to this work.

                Article
                srep16975
                10.1038/srep16975
                4653758
                26584517
                034d626c-6864-427e-a3e4-adae2c9efb96
                Copyright © 2015, Macmillan Publishers Limited

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 18 June 2015
                : 22 October 2015
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article