Eating carbohydrate mostly at lunch and protein mostly at dinner within a covert hypocaloric diet influences morning glucose homeostasis in overweight/obese men
There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.
Abstract
To evaluate the effects of two dietary patterns in which carbohydrates and proteins
were eaten mostly at lunch or dinner on body weight and composition, energy metabolism,
and biochemical markers in overweight/obese men.
For years, proponents of some fad diets have claimed that higher amounts of protein facilitate weight loss. Only in recent years have studies begun to examine the effects of high protein diets on energy expenditure, subsequent energy intake and weight loss as compared to lower protein diets. In this study, we conducted a systematic review of randomized investigations on the effects of high protein diets on dietary thermogenesis, satiety, body weight and fat loss. There is convincing evidence that a higher protein intake increases thermogenesis and satiety compared to diets of lower protein content. The weight of evidence also suggests that high protein meals lead to a reduced subsequent energy intake. Some evidence suggests that diets higher in protein result in an increased weight loss and fat loss as compared to diets lower in protein, but findings have not been consistent. In dietary practice, it may be beneficial to partially replace refined carbohydrate with protein sources that are low in saturated fat. Although recent evidence supports potential benefit, rigorous longer-term studies are needed to investigate the effects of high protein diets on weight loss and weight maintenance.
A relatively high percentage of energy intake as protein has been shown to increase satiety and decrease energy efficiency during overfeeding. To investigate whether addition of protein may improve weight maintenance by preventing or limiting weight regain after weight loss of 5-10% in moderately obese subjects. In a randomized parallel design, 148 male and female subjects (age 44.2 +/- 10.1 y; body mass index (BMI) 29.5 +/- 2.5 kg/m2; body fat 37.2 +/- 5.0%) followed a very low-energy diet (2.1 MJ/day) during 4 weeks. For subsequent 3 months weight-maintenance assessment, they were stratified according to age, BMI, body weight, restrained eating, and resting energy expenditure (REE), and randomized over two groups. Both groups visited the University with the same frequency, receiving the same counseling on demand by the dietitian. One group (n=73) received 48.2 g/day additional protein to their diet. Measurements at baseline, after weight loss, and after 3 months weight maintenance were body weight, body composition, metabolic measurements, appetite profile, eating attitude, and relevant blood parameters. Changes in body mass, waist circumference, REE, respiratory quotient (RQ), total energy expenditure (TEE), dietary restraint, fasting blood-glucose, insulin, triacylglycerol, leptin, beta-hydroxybutyrate, glycerol, and free fatty acids were significant during weight loss and did not differ between groups. During weight maintenance, the 'additional-protein group' showed in comparison to the nonadditional-protein group 18 vs 15 en% protein intake, a 50% lower body weight regain only consisting of fat-free mass, a 50% decreased energy efficiency, increased satiety while energy intake did not differ, and a lower increase in triacylglycerol and in leptin; REE, RQ, TEE, and increases in other blood parameters measured did not differ. A 20% higher protein intake, that is, 18% of energy vs 15% of energy during weight maintenance after weight loss, resulted in a 50% lower body weight regain, only consisting of fat-free mass, and related to increased satiety and decreased energy efficiency.
The nutritional composition of the dietary intake could produce specific effects on metabolic variables and inflammatory marker concentrations. This study assessed the effects of two hypocaloric diets (legume-restricted- vs. legume-based diet) on metabolic and inflammatory changes, accompanying weight loss. Thirty obese subjects (17 M/13F; BMI: 32.5 ± 4.5 kg/m(2); 36 ± 8 years) were randomly assigned to one of the following hypocaloric treatments (8 weeks): Calorie-restricted legume-free diet (Control: C-diet) or calorie-restricted legume-based diet (L-diet), prescribing 4 weekly different cooked-servings (160-235 g) of lentils, chickpeas, peas or beans. Body composition, blood pressure (BP), blood biochemical and inflammatory marker concentrations as well as dietary intake were measured at baseline and after the nutritional intervention. The L-diet achieved a greater body weight loss, when compared to the C-diet (-7.8 ± 2.9% vs. -5.3 ± 2.7%; p = 0.024). Total and LDL cholesterol levels and systolic BP were improved only when consuming the L-diet (p < 0.05). L-diet also resulted in a significant higher reduction in C-reactive protein (CRP) and complement C3 (C3) concentrations (p < 0.05), compared to baseline and C-diet values. Interestingly, the reduction in the concentrations of CRP and C3 remained significantly higher to L-diet group, after adjusting by weight loss (p < 0.05). In addition, the reduction (%) in CRP concentrations was positively associated with decreases (%) in systolic BP and total cholesterol concentration specifically in the L-diet group, independent from weight loss (p < 0.05). The consumption of legumes (4 servings/week) within a hypocaloric diet resulted in a specific reduction in proinflammatory markers, such as CRP and C3 and a clinically significant improvement of some metabolic features (lipid profile and BP) in overweight/ obese subjects, which were in some cases independent from weight loss.
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.