Habitat loss is currently a major threat to biodiversity, affecting species interactions, such as plant-pollinator interactions. This is particularly important in self-incompatible plants relying on pollinators to reproduce and sustain their populations. Here, we evaluated how habitat loss affects the pollination system, plant individual-pollinator species interaction network, and plant reproductive fitness of the self-incompatible Jasione maritima var. sabularia, a threatened taxon from dune systems. This plant is a pollinator generalist, visited by 108 species from distinct taxonomic groups. Results suggest that increasing habitat loss led to a significant decline in pollinator richness, increased pollen limitation, and a decrease in reproductive fitness of J. maritima var. sabularia. Visitation rate per individual did not significantly change with available area, indicating that the quality of pollen differed across populations. The topology of the network between J. maritima var. sabularia individuals and its pollinator species did not change, which may be attributed to the stability in the core of pollinator species. This suggests that the lower fitness of plants with increasing habitat degradation may be explained not only by the lower richness of peripheral pollinators but also by the genetic structure of the plant populations, as there is a possible higher transference of less quality pollen by pollinators, ultimately compromising the persistence of plant populations. Our study highlights the need of future studies to integrate the fine details provided by individual-level networks, which will increase our understanding of the pattern of species interactions and its consequences for the fitness of threatened plant populations.