4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Ambient Ultraviolet B Signal Modulates Tea Flavor Characteristics via Shifting a Metabolic Flux in Flavonoid Biosynthesis

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references59

          • Record: found
          • Abstract: found
          • Article: not found

          Flavonoids as antioxidants in plants: location and functional significance.

          Stress-responsive dihydroxy B-ring-substituted flavonoids have great potential to inhibit the generation of reactive oxygen species (ROS) and reduce the levels of ROS once they are formed, i.e., to perform antioxidant functions. These flavonoids are located within or in the proximity of centers of ROS generation in severely stressed plants. Efficient mechanisms have been recently identified for the transport of flavonoids from the endoplasmic reticulum, the site of their biosynthesis, to different cellular compartments. The mechanism underlying flavonoid-mediated ROS reduction in plants is still unclear. 'Antioxidant' flavonoids are found in the chloroplast, which suggests a role as scavengers of singlet oxygen and stabilizers of the chloroplast outer envelope membrane. Dihydroxy B-ring substituted flavonoids are present in the nucleus of mesophyll cells and may inhibit ROS-generation making complexes with Fe and Cu ions. The genes that govern the biosynthesis of antioxidant flavonoids are present in liverworts and mosses and are mostly up-regulated as a consequence of severe stress. This suggests that the antioxidant flavonoid metabolism is a robust trait of terrestrial plants. Vacuolar dihydroxy B-ring flavonoids have been reported to serve as co-substrates for vacuolar peroxidases to reduce H(2)O(2) escape from the chloroplast, following the depletion of ascorbate peroxidase activity. Antioxidant flavonoids may effectively control key steps of cell growth and differentiation, thus acting regulating the development of the whole plant and individual organs. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Transcriptional control of flavonoid biosynthesis by MYB-bHLH-WDR complexes.

            Flavonoids are widely known for the colors they confer to plant tissues, their contribution to plant fitness and health benefits, and impact on food quality. As convenient biological markers, flavonoids have been instrumental in major genetic and epigenetic discoveries. We review recent advances in the characterization of the underlying regulatory mechanisms of flavonoid biosynthesis, with a special focus on the MBW (MYB-bHLH-WDR) protein complexes. These proteins are well conserved in higher plants. They participate in different types of controls ranging from fine-tuned transcriptional regulation by environmental factors to the initiation of the flavonoid biosynthesis pathway by positive regulatory feedback. The MBW protein complexes provide interesting models for investigating developmentally or environmentally controlled transcriptional regulatory networks.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Draft genome sequence of Camellia sinensis var. sinensis provides insights into the evolution of the tea genome and tea quality

              Significance A high-quality genome assembly of Camellia sinensis var. sinensis facilitates genomic, transcriptomic, and metabolomic analyses of the quality traits that make tea one of the world’s most-consumed beverages. The specific gene family members critical for biosynthesis of key tea metabolites, monomeric galloylated catechins and theanine, are indicated and found to have evolved specifically for these functions in the tea plant lineage. Two whole-genome duplications, critical to gene family evolution for these two metabolites, are identified and dated, but are shown to account for less amplification than subsequent paralogous duplications. These studies lay the foundation for future research to understand and utilize the genes that determine tea quality and its diversity within tea germplasm.
                Bookmark

                Author and article information

                Contributors
                Journal
                Journal of Agricultural and Food Chemistry
                J. Agric. Food Chem.
                American Chemical Society (ACS)
                0021-8561
                1520-5118
                March 24 2021
                March 15 2021
                March 24 2021
                : 69
                : 11
                : 3401-3414
                Affiliations
                [1 ]State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui 230036, People’s Republic of China
                Article
                10.1021/acs.jafc.0c07009
                33719437
                0334aeff-6d3a-4a19-9877-01e7f00fff63
                © 2021

                https://doi.org/10.15223/policy-029

                https://doi.org/10.15223/policy-037

                https://doi.org/10.15223/policy-045

                History

                Comments

                Comment on this article