10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      A review of technologies for the phenolic compounds recovery and phenol removal from wastewater

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references269

          • Record: found
          • Abstract: found
          • Article: not found

          Natural deep eutectic solvents as new potential media for green technology.

          Developing new green solvents is one of the key subjects in Green Chemistry. Ionic liquids (ILs) and deep eutectic solvents, thus, have been paid great attention to replace current harsh organic solvents and have been applied to many chemical processing such as extraction and synthesis. However, current ionic liquids and deep eutectic solvents have still limitations to be applied to a real chemical industry due to toxicity against human and environment and high cost of ILs and solid state of most deep eutectic solvents at room temperature. Recently we discovered that many plant abundant primary metabolites changed their state from solid to liquid when they were mixed in proper ratio. This finding made us hypothesize that natural deep eutectic solvents (NADES) play a role as alternative media to water in living organisms and tested a wide range of natural products, which resulted in discovery of over 100 NADES from nature. In order to prove deep eutectic feature the interaction between the molecules was investigated by nuclear magnetic resonance spectroscopy. All the tested NADES show clear hydrogen bonding between components. As next step physical properties of NADES such as water activity, density, viscosity, polarity and thermal properties were measured as well as the effect of water on the physical properties. In the last stage the novel NADES were applied to the solubilization of wide range of biomolecules such as non-water soluble bioactive natural products, gluten, starch, and DNA. In most cases the solubility of the biomolecules evaluated in this study was greatly higher than water. Based on the results the novel NADES may be expected as potential green solvents at room temperature in diverse fields of chemistry. Copyright © 2012 Elsevier B.V. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Extracellular electron transfer mechanisms between microorganisms and minerals.

            Electrons can be transferred from microorganisms to multivalent metal ions that are associated with minerals and vice versa. As the microbial cell envelope is neither physically permeable to minerals nor electrically conductive, microorganisms have evolved strategies to exchange electrons with extracellular minerals. In this Review, we discuss the molecular mechanisms that underlie the ability of microorganisms to exchange electrons, such as c-type cytochromes and microbial nanowires, with extracellular minerals and with microorganisms of the same or different species. Microorganisms that have extracellular electron transfer capability can be used for biotechnological applications, including bioremediation, biomining and the production of biofuels and nanomaterials.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Direct and mediated anodic oxidation of organic pollutants.

                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Process Safety and Environmental Protection
                Process Safety and Environmental Protection
                Elsevier BV
                09575820
                July 2021
                July 2021
                : 151
                : 257-289
                Article
                10.1016/j.psep.2021.05.015
                0321fbea-3c4d-47ee-b088-d684a50c6e2c
                © 2021

                https://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article