46
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Multiple functions of DDX3 RNA helicase in gene regulation, tumorigenesis, and viral infection

      review-article
      Frontiers in Genetics
      Frontiers Media S.A.
      DDX3, HCV, HIV-1, innate immunity, RNA helicases, stress granules, translation, tumor suppressor

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The DEAD-box RNA helicase DDX3 is a multifunctional protein involved in all aspects of RNA metabolism, including transcription, splicing, mRNA nuclear export, translation, RNA decay and ribosome biogenesis. In addition, DDX3 is also implicated in cell cycle regulation, apoptosis, Wnt-β-catenin signaling, tumorigenesis, and viral infection. Notably, recent studies suggest that DDX3 is a component of anti-viral innate immune signaling pathways. Indeed, DDX3 contributes to enhance the induction of anti-viral mediators, interferon (IFN) regulatory factor 3 and type I IFN. However, DDX3 seems to be an important target for several viruses, such as human immunodeficiency virus type 1 (HIV-1), hepatitis C virus (HCV), hepatitis B virus (HBV), and poxvirus. DDX3 interacts with HIV-1 Rev or HCV Core protein and modulates its function. At least, DDX3 is required for both HIV-1 and HCV replication. Therefore, DDX3 could be a novel therapeutic target for the development of drug against HIV-1 and HCV.

          Related collections

          Most cited references101

          • Record: found
          • Abstract: found
          • Article: not found

          The lipid droplet is an important organelle for hepatitis C virus production.

          The lipid droplet (LD) is an organelle that is used for the storage of neutral lipids. It dynamically moves through the cytoplasm, interacting with other organelles, including the endoplasmic reticulum (ER). These interactions are thought to facilitate the transport of lipids and proteins to other organelles. The hepatitis C virus (HCV) is a causative agent of chronic liver diseases. HCV capsid protein (Core) associates with the LD, envelope proteins E1 and E2 reside in the ER lumen, and the viral replicase is assumed to localize on ER-derived membranes. How and where HCV particles are assembled, however, is poorly understood. Here, we show that the LD is involved in the production of infectious virus particles. We demonstrate that Core recruits nonstructural (NS) proteins and replication complexes to LD-associated membranes, and that this recruitment is critical for producing infectious viruses. Furthermore, virus particles were observed in close proximity to LDs, indicating that some steps of virus assembly take place around LDs. This study reveals a novel function of LDs in the assembly of infectious HCV and provides a new perspective on how viruses usurp cellular functions.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            P bodies and the control of mRNA translation and degradation.

            Recent results indicate that many untranslating mRNAs in somatic eukaryotic cells assemble into related mRNPs that accumulate in specific cytoplasmic foci referred to as P bodies. Transcripts associated with P body components can either be degraded or return to translation. Moreover, P bodies are also biochemically and functionally related to some maternal and neuronal mRNA granules. This suggests an emerging model of cytoplasmic mRNA function in which the rates of translation and degradation of mRNAs are influenced by a dynamic equilibrium between polysomes and the mRNPs seen in P bodies. Moreover, some mRNA-specific regulatory factors, including miRNAs and RISC, appear to repress translation and promote decay by recruiting P body components to individual mRNAs.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The DEAD-box protein family of RNA helicases.

              RNA helicases of the DEAD-box protein family have been shown to participate in every aspect of RNA metabolism. They are present in most organisms where they work as RNA helicases or RNPases. The properties of these enzymes in vivo remains poorly described, however some were extensively characterized in vitro, and the solved crystal structures of a few are now available. Taken together, this information gives insight into the regulation of ATP and RNA binding as well as in the ATPase and helicase activities. This review will focus on the description of the molecular characteristics of members of the DEAD-box protein family and on the enzymatic activities they possess.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Genet
                Front Genet
                Front. Genet.
                Frontiers in Genetics
                Frontiers Media S.A.
                1664-8021
                23 October 2014
                05 December 2014
                2014
                : 5
                : 423
                Affiliations
                Ariumi Project Laboratory, Center for AIDS Research – International Research Center for Medical Sciences, Kumamoto University Kumamoto, Japan
                Author notes

                Edited by: Masayuki Seki, Tohoku Pharmaceutical University, Japan

                Reviewed by: Kaoru Tominaga, Jichi Medical University, Japan; Victoria V. Lunyak, Buck Institute for Research on Aging, USA

                *Correspondence: Yasuo Ariumi, Ariumi Project Laboratory, Center for AIDS Research – International Research Center for Medical Sciences, Kumamoto University, 2-2-1 Honjo, Kumamoto 860-0811, Japan e-mail: ariumi@ 123456kumamoto-u.ac.jp

                This article was submitted to Genetics of Aging, a section of the journal Frontiers in Genetics.

                Article
                10.3389/fgene.2014.00423
                4257086
                25538732
                02f8950d-5052-4bd4-8992-79091e2e2b4b
                Copyright © 2014 Ariumi.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 30 September 2014
                : 19 November 2014
                Page count
                Figures: 4, Tables: 1, Equations: 0, References: 121, Pages: 10, Words: 0
                Categories
                Genetics
                Review Article

                Genetics
                ddx3,hcv,hiv-1,innate immunity,rna helicases,stress granules,translation,tumor suppressor
                Genetics
                ddx3, hcv, hiv-1, innate immunity, rna helicases, stress granules, translation, tumor suppressor

                Comments

                Comment on this article