122
views
0
recommends
+1 Recommend
2 collections
    11
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Whole-genome sequencing of Leptospira interrogans from southern Brazil: genetic features of a highly virulent strain

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          BACKGROUND

          Leptospirosis is the most widespread zoonotic disease. It is caused by infection with pathogenic Leptospira species, of which over 300 serovars have been described. The accurate identification of the causative Leptospira spp. is required to ascertain the pathogenic status of the local isolates.

          OBJECTIVES

          This study aimed to obtain the complete genome sequence of a virulent Leptospira interrogans strain isolated from southern Brazil and to describe its genetic features.

          METHODS

          The whole genome was sequenced by next-generation sequencing (Ion Torrent). The genome was assembled, scaffolded, annotated, and manually reviewed. Mutations were identified based on a variant calling analysis using the genome of L. interrogans strain Fiocruz L1-130 as a reference.

          FINDINGS

          The entire genome had an average GC content of 35%. The variant calling analysis identified 119 single nucleotide polymorphisms (SNPs), from which 30 led to a missense mutation. The structural analyses identified potential evidence of genomic inversions, translocations, and deletions in both the chromosomes.

          MAIN CONCLUSIONS

          The genome properties provide comprehensive information about the local isolates of Leptospira spp., and thereby, could facilitate the identification of new targets for the development of diagnostic kits and vaccines.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: found
          • Article: not found

          Leptospira and leptospirosis.

          Leptospirosis is the most wide spread zoonosis worldwide; it is present in all continents except Antarctica and evidence for the carriage of Leptospira has been found in virtually all mammalian species examined. Humans most commonly become infected through occupational, recreational, or domestic contact with the urine of carrier animals, either directly or via contaminated water or soil. Leptospires are thin, helical bacteria classified into at least 12 pathogenic and 4 saprophytic species, with more than 250 pathogenic serovars. Immunity following infection is generally, but not exclusively, mediated by antibody against leptospiral LPS and restricted to antigenically related serovars. Vaccines currently available consist of killed whole cell bacterins which are used widely in animals, but less so in humans. Current work with recombinant protein antigens shows promise for the development of vaccines based on defined protective antigens. The cellular and molecular basis for virulence remains poorly understood, but comparative genomics of pathogenic and saprophytic species suggests that Leptospira expresses unique virulence determinants. However, the recent development of defined mutagenesis systems for Leptospira heralds the potential for gaining a much improved understanding of pathogenesis in leptospirosis. Copyright 2009 Elsevier B.V. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Artemis: sequence visualization and annotation

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              What Makes a Bacterial Species Pathogenic?:Comparative Genomic Analysis of the Genus Leptospira

              Leptospirosis, caused by spirochetes of the genus Leptospira, is a globally widespread, neglected and emerging zoonotic disease. While whole genome analysis of individual pathogenic, intermediately pathogenic and saprophytic Leptospira species has been reported, comprehensive cross-species genomic comparison of all known species of infectious and non-infectious Leptospira, with the goal of identifying genes related to pathogenesis and mammalian host adaptation, remains a key gap in the field. Infectious Leptospira, comprised of pathogenic and intermediately pathogenic Leptospira, evolutionarily diverged from non-infectious, saprophytic Leptospira, as demonstrated by the following computational biology analyses: 1) the definitive taxonomy and evolutionary relatedness among all known Leptospira species; 2) genomically-predicted metabolic reconstructions that indicate novel adaptation of infectious Leptospira to mammals, including sialic acid biosynthesis, pathogen-specific porphyrin metabolism and the first-time demonstration of cobalamin (B12) autotrophy as a bacterial virulence factor; 3) CRISPR/Cas systems demonstrated only to be present in pathogenic Leptospira, suggesting a potential mechanism for this clade’s refractoriness to gene targeting; 4) finding Leptospira pathogen-specific specialized protein secretion systems; 5) novel virulence-related genes/gene families such as the Virulence Modifying (VM) (PF07598 paralogs) proteins and pathogen-specific adhesins; 6) discovery of novel, pathogen-specific protein modification and secretion mechanisms including unique lipoprotein signal peptide motifs, Sec-independent twin arginine protein secretion motifs, and the absence of certain canonical signal recognition particle proteins from all Leptospira; and 7) and demonstration of infectious Leptospira-specific signal-responsive gene expression, motility and chemotaxis systems. By identifying large scale changes in infectious (pathogenic and intermediately pathogenic) vs. non-infectious Leptospira, this work provides new insights into the evolution of a genus of bacterial pathogens. This work will be a comprehensive roadmap for understanding leptospirosis pathogenesis. More generally, it provides new insights into mechanisms by which bacterial pathogens adapt to mammalian hosts.
                Bookmark

                Author and article information

                Journal
                Mem Inst Oswaldo Cruz
                Mem. Inst. Oswaldo Cruz
                mioc
                Memórias do Instituto Oswaldo Cruz
                Instituto Oswaldo Cruz, Ministério da Saúde
                0074-0276
                1678-8060
                February 2018
                February 2018
                : 113
                : 2
                : 80-86
                Affiliations
                [1]Universidade Federal de Pelotas, Centro de Desenvolvimento Tecnológico, Núcleo de Biotecnologia, Pelotas, RS, Brasil
                Author notes
                [+ ] Corresponding author: sergiojorgevet@ 123456hotmail.com

                AUTHORS’ CONTRIBUTION

                SJ, FSK, NRO, VFC, LSP and OAD designed the study and wrote the manuscript; SJ and NRO performed the sequencing experiment; FSK, GOSVN, AMG, CDS and RDSW performed the bioinformatics analysis and created the figures and tables; KFR isolated the Piscina strain. All authors contributed to and revised the manuscript.

                The authors certify that they have no potential conflicts of interest.

                Article
                0074-02760170130
                10.1590/0074-02760170130
                5722262
                29236923
                02f6ecf6-192f-4369-9211-508e20dde476

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 02 April 2017
                : 20 June 2017
                Page count
                Figures: 2, Tables: 2, Equations: 0, References: 30, Pages: 7
                Categories
                Article

                leptospirosis,genomics,bioinformatics,next-generation sequencing,leptospira interrogans,zoonosis,phylogenetic analysis,whole-genome sequencing

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content880

                Cited by9

                Most referenced authors736