21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Nanomaterials-based electrochemical detection of chemical contaminants

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Recent advances in the development of nanomaterials-based electrochemical sensors for environmental monitoring and food safety applications are assessed.

          Abstract

          Owing to the high toxicity and detrimental effects of chemical contaminants to human health and the environment, public concerns over chemical contaminants in the environment and in foods have been mounting drastically. It is therefore significant to monitor contaminants via portable sensing devices, which encompass the demands of being low-cost and the potential for online environmental monitoring and food safety applications. This review will assess various concepts and recent advancements in design and the application of state-of-the-art nanomaterials through the incorporation of carbon nanomaterials, metallic and metallic oxide nanoparticles, titanium dioxide nanotubes, and dendrimers toward the development of electrochemical sensors for the detection of chemical contaminants in the environment and in foods. The development of nanomaterials based sensors facilitated by recent advances is having a major impact on sensor industries for environmental and food safety monitoring. Electrochemical sensing strategies have spurred intense interest in the research community as they have the capacity to serve as ideal sensor technology candidates, having such features as rapid response, robustness, high sensitivity and selectivity, low cost, miniaturization, and the potential for real-time monitoring. Nanomaterials have strong potential for increasing the competitiveness of new sensors for environmental monitoring and food safety applications through the combination of efficacious, yet simple fabrication techniques in the development of critical nanometric interfaces, and the optimization of their design and performance. Opportunities and future considerations for the use of nanomaterials in electrochemical sensors for producing advanced environmental and food sensing devices will also be addressed.

          Related collections

          Most cited references184

          • Record: found
          • Abstract: found
          • Article: not found

          Dendrimer-encapsulated metal nanoparticles: synthesis, characterization, and applications to catalysis.

          This Account reports the synthesis and characterization of dendrimer-encapsulated metal nanoparticles and their applications to catalysis. These materials are prepared by sequestering metal ions within dendrimers followed by chemical reduction to yield the corresponding zerovalent metal nanoparticle. The size of such particles depends on the number of metal ions initially loaded into the dendrimer. Intradendrimer hydrogenation and carbon-carbon coupling reactions in water, organic solvents, biphasic fluorous/organic solvents, and supercritical CO2 are also described.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Platinum-based nanostructured materials: synthesis, properties, and applications.

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Recent trends in macro-, micro-, and nanomaterial-based tools and strategies for heavy-metal detection.

                Bookmark

                Author and article information

                Journal
                RSCACL
                RSC Adv.
                RSC Adv.
                Royal Society of Chemistry (RSC)
                2046-2069
                2014
                2014
                : 4
                : 109
                : 63741-63760
                Article
                10.1039/C4RA10399H
                02e55b3d-1e57-431e-bddb-f023ea28ebca
                © 2014
                History

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content311

                Cited by36

                Most referenced authors1,816