29
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A Novel Synthesis of the Efficient Anti-Coccidial Drug Halofuginone Hydrobromide

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background: Halofuginone hydrobromide ( 1) is recognized as an effective drug against several species of Eimeria (E.) in poultry. In this paper, we describe a convenient and low cost preparation method for the compound, as well as primary validation of its activity. Methods: First, 7-bromo-6-chloroquinazolin-4(3 H)-one ( 2) was prepared from m-chlorotoluene by a conventional process, and then chloroacetone was creatively introduced in two steps. Finally, halofuginone hydrobromide ( 1) was obtained from 7-bromo-6-chloro-3-(3-cholroacetonyl) quinazolin-4(3 H)-one ( 4) by a four-step reaction sequence including condensation, cyclization, deprotection and isomerization. The structures of the relative intermediates and target compound were characterized by melting point, IR, MS and 1H-NMR. Besides, the protective effect of compound 1-supplemented chicken diet at doses of 6, 3 and 1.5 mg per 1 kg were evaluated on chickens infected with E. tenella, by reduction in mortality, weight loss, fecal oocyst excretion and gut pathology, respectively. Results: Halofuginone hydrobromide ( 1) was prepared successfully by and improved and innovative method based on traditional research. Moreover, the synthesized halofuginone hydrobromide significantly exhibited an anti-coccidial property. Conclusions: The fruitful work described in this Communication has resulted in halofuginone hydrobromide, which has a good pharmaceutical development prospects, becoming more available for large-scale production.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: found
          • Article: not found

          Phase I and pharmacokinetic study of halofuginone, an oral quinazolinone derivative in patients with advanced solid tumours.

          Halofuginone (tempostatin) is a synthetic derivative of a quinazolinone alkaloid showing anti-angiogenic, anti-metastatic and anti-proliferative effects in preclinical studies. The objectives of this phase I study were to assess the dose-limiting toxicities (DLTs), to determine the maximum tolerated dose (MTD) and to study the pharmacokinetics (PKs) of halofuginone when administered once or twice daily orally to patients with advanced solid tumours. Patients were treated with escalating doses of halofuginone at doses ranging from 0.5 to 3.5 mg/day. For pharmacokinetic analysis plasma sampling was performed during the first and second course and assayed using a validated high-performance liquid chromatographic assay with mass spectrometric detection. Twenty-four patients received a total of 106 courses. The 'acute' MTD was reached at 3.5 mg/day, with nausea, vomiting, and fatigue as DLT. The recommended dose for chronic administration was defined as 0.5mg/day with the requirement of 5HT3 antagonists to control nausea and vomiting considered as DLT. Several patients experienced bleeding complications on treatment with halofuginone in which a causal relationship could not be excluded. The PKs of halofuginone were linear over the dose range studied with a large interpatient variability. In this study the DLT of halofuginone was nausea, vomiting, and fatigue. The recommended dose for phase II studies of halofuginone is 0.5mg administered orally, once daily.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Anticancer activity of halofuginone in a preclinical model of osteosarcoma: inhibition of tumor growth and lung metastases

            Osteosarcoma is the main malignant primary bone tumor in children and adolescents for whom the prognosis remains poor, especially when metastases are present at diagnosis. Because we recently demonstrated that TGF-β/Smad cascade plays a crucial role in osteosarcoma metastatic progression, we investigated the effect of halofuginone, identified as an inhibitor of the TGF-β/Smad3 cascade, on osteosarcoma progression. A preclinical model of osteosarcoma was used to evaluate the impact of halofuginone on tumor growth, tumor microenvironment and metastasis development. In vivo experiments showed that halofuginone reduces primary tumor growth and lung metastases development. In vitro experiments demonstrated that halofuginone decreases cell viability mainly by its ability to induce caspase-3 dependent cell apoptosis. Moreover, halofuginone inhibits the TGF-β/Smad3 cascade and the response of TGF-β key targets involved in the metastases dissemination process such as MMP-2. In addition, halofuginone treatment affects the “vicious cycle” established between tumor and bone cells, and therefore the tumor-associated bone osteolysis. Together, these results demonstrate that halofuginone decreased primary osteosarcoma development and associated lung metastases by targeting both the tumor cells and the tumor microenvironment. Using halofuginone may be a promising therapeutic strategy against tumor progression of osteosarcoma specifically against lung metastases dissemination.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Halofuginone for fibrosis, regeneration and cancer in the gastrointestinal tract.

              Mark Pines (2014)
              Organ fibrosis and architectural remodeling can severely disrupt tissue function, often with fatal consequences. Fibrosis is the end result of chronic inflammatory reactions induced by a variety of stimuli, and the key cellular mediator of fibrosis comprises the myofibroblasts which, when activated, serve as the primary collagen-producing cells. Complex links exist between fibrosis, regeneration and carcinogenesis, and the concept that all organs contain common tissue fibrosis pathways that could be potential therapeutic targets is an attractive one. Because of the major impact of fibrosis on human health there is an unmet need for safe and effective therapies that directly target fibrosis. Halofuginone inhibits tissue fibrosis and regeneration, and thereby affects the development of tumors in various tissues along the gastrointestinal tract. The high efficacy of halofuginone in reducing the fibrosis that affects tumor growth and tissue regeneration is probably due to its dual role in inhibiting the signaling pathway of transforming growth factor β, on the one hand, and inhibiting the development of Th17 cells, on the other hand. At present halofuginone is being evaluated in a clinical trial for other fibrotic indication, and any clinical success in that trial would allow the use of halofuginone, also for all other fibrotic indications, including those of the gastrointestinal tract.
                Bookmark

                Author and article information

                Journal
                Molecules
                Molecules
                molecules
                Molecules : A Journal of Synthetic Chemistry and Natural Product Chemistry
                MDPI
                1420-3049
                30 June 2017
                July 2017
                : 22
                : 7
                : 1086
                Affiliations
                [1 ]School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; zjr1108@ 123456njau.edu.cn
                [2 ]Laboratory of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
                [3 ]School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China; qz_yao@ 123456163.com
                Author notes
                [* ]Correspondence: Njustlzl723@ 123456hotmail.com ; Tel.: +86-25-8431-8865
                [†]

                These authors contributed equally to this work.

                Author information
                https://orcid.org/0000-0002-3045-7242
                Article
                molecules-22-01086
                10.3390/molecules22071086
                6152095
                28665346
                02d236e9-e60b-48b8-82f3-fc496cb07f0e
                © 2017 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 09 June 2017
                : 28 June 2017
                Categories
                Communication

                febrifugine,halofuginone hydrobromide,asymmetric synthesis,4(3h)-quinazolinone,piperidine

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content249

                Cited by2

                Most referenced authors224