7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Emerging Role of H3K9me3 as a Potential Therapeutic Target in Acute Myeloid Leukemia

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Growing evidence has demonstrated that epigenetic dysregulation is a common pathological feature in human cancer cells. Global alterations in the epigenetic landscape are prevalent in malignant cells across different solid tumors including, prostate cancer, non-small-cell lung cancer, renal cell carcinoma, and in haemopoietic malignancy. In particular, DNA hypomethylation and histone hypoacetylation have been observed in acute myeloid leukemia (AML) patient blasts, with histone methylation being an emerging area of study. Histone 3 lysine 9 trimethylation (H3K9me3) is a post-translational modification known to be involved in the regulation of a broad range of biological processes, including the formation of transcriptionally silent heterochromatin. Following the observation of its aberrant methylation status in hematological malignancy and several other cancer phenotypes, recent studies have associated H3K9me3 levels with patient outcome and highlighted key molecular mechanisms linking H3K9me3 profile with AML etiology in a number of large-scale meta-analysis. Consequently, the development and application of small molecule inhibitors which target the histone methyltransferases or demethylase enzymes known to participate in the oncogenic regulation of H3K9me3 in AML represents an advancing area of ongoing study. Here, we provide a comprehensive review on how this particular epigenetic mark is regulated within cells and its emerging role as a potential therapeutic target in AML, along with an update on the current research into advancing the generation of more potent and selective inhibitors against known H3K9 methyltransferases and demethylases.

          Related collections

          Most cited references125

          • Record: found
          • Abstract: found
          • Article: not found

          Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain.

          Heterochromatin protein 1 (HP1) is localized at heterochromatin sites where it mediates gene silencing. The chromo domain of HP1 is necessary for both targeting and transcriptional repression. In the fission yeast Schizosaccharomyces pombe, the correct localization of Swi6 (the HP1 equivalent) depends on Clr4, a homologue of the mammalian SUV39H1 histone methylase. Both Clr4 and SUV39H1 methylate specifically lysine 9 of histone H3 (ref. 6). Here we show that HP1 can bind with high affinity to histone H3 methylated at lysine 9 but not at lysine 4. The chromo domain of HP1 is identified as its methyl-lysine-binding domain. A point mutation in the chromo domain, which destroys the gene silencing activity of HP1 in Drosophila, abolishes methyl-lysine-binding activity. Genetic and biochemical analysis in S. pombe shows that the methylase activity of Clr4 is necessary for the correct localization of Swi6 at centromeric heterochromatin and for gene silencing. These results provide a stepwise model for the formation of a transcriptionally silent heterochromatin: SUV39H1 places a 'methyl marker' on histone H3, which is then recognized by HP1 through its chromo domain. This model may also explain the stable inheritance of the heterochromatic state.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Reversal of histone lysine trimethylation by the JMJD2 family of histone demethylases.

            Histone methylation regulates chromatin structure, transcription, and epigenetic state of the cell. Histone methylation is dynamically regulated by histone methylases and demethylases such as LSD1 and JHDM1, which mediate demethylation of di- and monomethylated histones. It has been unclear whether demethylases exist that reverse lysine trimethylation. We show the JmjC domain-containing protein JMJD2A reversed trimethylated H3-K9/K36 to di- but not mono- or unmethylated products. Overexpression of JMJD2A but not a catalytically inactive mutant reduced H3-K9/K36 trimethylation levels in cultured cells. In contrast, RNAi depletion of the C. elegans JMJD2A homolog resulted in an increase in general H3-K9Me3 and localized H3-K36Me3 levels on meiotic chromosomes and triggered p53-dependent germline apoptosis. Additionally, other human JMJD2 subfamily members also functioned as trimethylation-specific demethylases, converting H3-K9Me3 to H3-K9Me2 and H3-K9Me1, respectively. Our finding that this family of demethylases generates different methylated states at the same lysine residue provides a mechanism for fine-tuning histone methylation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The role of mutations in epigenetic regulators in myeloid malignancies.

              Recent genomic studies have identified novel recurrent somatic mutations in patients with myeloid malignancies, including myeloproliferative neoplasms (MPNs), myelodysplastic syndrome (MDS) and acute myeloid leukaemia (AML). In some cases these mutations occur in genes with known roles in regulating chromatin and/or methylation states in haematopoietic progenitors, and in other cases genetic and functional studies have elucidated a role for specific mutations in altering epigenetic patterning in myeloid malignancies. In this Review we discuss recent genetic and functional data implicating mutations in epigenetic modifiers, including tet methylcytosine dioxygenase 2 (TET2), isocitrate dehydrogenase 1 (IDH1), IDH2, additional sex combs-like 1 (ASXL1), enhancer of zeste homologue 2 (EZH2) and DNA methyltransferase 3A (DNMT3A), in the pathogenesis of MPN, MDS and AML, and discuss how this knowledge is leading to novel clinical, biological and therapeutic insights.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Oncol
                Front Oncol
                Front. Oncol.
                Frontiers in Oncology
                Frontiers Media S.A.
                2234-943X
                02 August 2019
                2019
                : 9
                : 705
                Affiliations
                [1] 1Haemato-Oncology/Systems Medicine Group, Paul O'Gorman Leukemia Research Center, Institute of Cancer Sciences, University of Glasgow , Glasgow, United Kingdom
                [2] 2School of Chemistry, University of Glasgow , Glasgow, United Kingdom
                Author notes

                Edited by: Cyrus Khandanpour, University Hospital Münster, Germany

                Reviewed by: Zeng-quan Yang, Wayne State University, United States; Shilpa Dhar, University of Texas MD Anderson Cancer Center, United States; Manfred Jung, University of Freiburg, Germany

                *Correspondence: Xu Huang xu.huang@ 123456glasgow.ac.uk

                This article was submitted to Hematologic Malignancies, a section of the journal Frontiers in Oncology

                Article
                10.3389/fonc.2019.00705
                6687838
                31428579
                02bdc36f-b3f7-4ac8-8f52-d50a70cc07a5
                Copyright © 2019 Monaghan, Massett, Bunschoten, Hoose, Pirvan, Liskamp, Jørgensen and Huang.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 16 April 2019
                : 16 July 2019
                Page count
                Figures: 2, Tables: 2, Equations: 0, References: 168, Pages: 16, Words: 13149
                Funding
                Funded by: Leuka 10.13039/100011717
                Award ID: 2016/JGF/0005
                Funded by: Wellcome Trust 10.13039/100004440
                Award ID: 105614/Z/14/Z
                Categories
                Oncology
                Review

                Oncology & Radiotherapy
                acute myeloid leukemia (aml),leukaemic stem cell (lsc),histone 3 lysine 9 trimethylation (h3k9me3),lysine specific demethylase (kdm),heterochromatin,gene suppression

                Comments

                Comment on this article