23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Molecular and functional characterization of the plastid-localized Phosphoenolpyruvate enolase (ENO1) from Arabidopsis thaliana.

      Febs Letters
      Arabidopsis, genetics, metabolism, Cloning, Molecular, Enzyme Activation, Kinetics, Organ Specificity, Phosphopyruvate Hydratase, isolation & purification, Plant Roots, Plants, Genetically Modified, Plastids, Tissue Distribution

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The Arabidopsis thaliana gene At1g74030 codes for a putative plastid phosphoenolpyruvate (PEP) enolase (ENO1). The recombinant ENO1 protein exhibited enolase activity and its kinetic properties were determined. ENO1 is localized to plastids and expressed in most heterotrophic tissues including trichomes and non-root-hair cells, but not in the mesophyll of leaves. Two T-DNA insertion eno1 mutants exhibited distorted trichomes and reduced numbers of root hairs as the only visible phenotype. The essential role of ENO1 in PEP provision for anabolic processes within plastids, such as the shikimate pathway, is discussed with respect to plastid transporters, such as the PEP/phosphate translocator.

          Related collections

          Author and article information

          Comments

          Comment on this article