24
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Distinct expression, localization and function of two Rab7 proteins encoded by paralogous genes in a free-living model eukaryote.

      Read this article at

      ScienceOpenPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Rab7 GTPases are involved in membrane trafficking in the late endosomal/lysosomal pathway. In Paramecium octaurelia Rab7a and Rab7b are encoded by paralogous genes. Antipeptide antibodies generated against divergent C-termini recognize Rab7a of 22.5 kDa and Rab7b of 25 kDa, respectively. In 2D gel electrophoresis two immunoreactive spots were identified for Rab7b at pI about 6.34 and about 6.18 and only one spot for Rab7a of pI about 6.34 suggesting post-translational modification of Rab7b. Mass spectrometry revealed eight identical phosphorylated residues in the both proteins. ProQ Emerald staining and ConA overlay of immunoprecipitated Rab7b indicated its putative glycosylation that was further supported by a faster electrophoretic mobility of this protein upon deglycosylation. Such a post-translational modification and substitution of Ala(140) in Rab7a for Ser(140) in Rab7b may result in distinct targeting to the oral apparatus where Rab7b associates with the microtubular structures as revealed by STED confocal and electron microscopy. Rab7a was mapped to phagosomal compartment. Absolute qReal-Time PCR analysis revealed that expression of Rab7a was 2.6-fold higher than that of Rab7b. Upon latex internalization it was further 2-fold increased for Rab7a and only slightly for Rab7b. Post-transcriptional gene silencing of rab7a suppressed phagosome formation by 70 % and impaired their acidification. Ultrastructural analysis with double immunogold labeling revealed that this effect was due to the lack of V-ATPase recruitment to phagolysosomes. No significant phenotype changes were noticed in cells upon rab7b silencing. In conclusion, Rab7b acquired a new function, whereas Rab7a can be assigned to the phagolysosomal pathway.

          Related collections

          Author and article information

          Journal
          Acta Biochim. Pol.
          Acta biochimica Polonica
          1734-154X
          0001-527X
          2011
          : 58
          : 4
          Affiliations
          [1 ] Nencki Institute of Experimental Biology, Warszawa, Poland.
          Article
          20110104
          22030555
          0244bdcb-a34d-4ecb-9606-288ec7a6be7a
          History

          Comments

          Comment on this article