12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Mechanisms of transport enhancement for self-propelled nanoswimmers in a porous matrix

      , ,
      Proceedings of the National Academy of Sciences
      Proceedings of the National Academy of Sciences

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Micro/nanoswimmers convert diverse energy sources into directional movement, demonstrating significant promise for biomedical and environmental applications, many of which involve complex, tortuous, or crowded environments. Here, we investigated the transport behavior of self-propelled catalytic Janus particles in a complex interconnected porous void space, where the rate-determining step involves the escape from a cavity and translocation through holes to adjacent cavities. Surprisingly, self-propelled nanoswimmers escaped from cavities more than 20× faster than passive (Brownian) particles, despite the fact that the mobility of nanoswimmers was less than 2× greater than that of passive particles in unconfined bulk liquid. Combining experimental measurements, Monte Carlo simulations, and theoretical calculations, we found that the escape of nanoswimmers was enhanced by nuanced secondary effects of self-propulsion which were amplified in confined environments. In particular, active escape was facilitated by anomalously rapid confined short-time mobility, highly efficient surface-mediated searching for holes, and the effective abolition of entropic and/or electrostatic barriers at the exit hole regions by propulsion forces. The latter mechanism converted the escape process from barrier-limited to search-limited. These findings provide general and important insights into micro/nanoswimmer mobility in complex environments.

          Related collections

          Most cited references60

          • Record: found
          • Abstract: found
          • Article: not found

          Micro/nanorobots for biomedicine: Delivery, surgery, sensing, and detoxification

          Micro- and nanoscale robots that can effectively convert diverse energy sources into movement and force represent a rapidly emerging and fascinating robotics research area. Recent advances in the design, fabrication, and operation of micro/nanorobots have greatly enhanced their power, function, and versatility. The new capabilities of these tiny untethered machines indicate immense potential for a variety of biomedical applications. This article reviews recent progress and future perspectives of micro/nanorobots in biomedicine, with a special focus on their potential advantages and applications for directed drug delivery, precision surgery, medical diagnosis and detoxification. Future success of this technology, to be realized through close collaboration between robotics, medical and nanotechnology experts, should have a major impact on disease diagnosis, treatment, and prevention.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Self-motile colloidal particles: from directed propulsion to random walk.

            The motion of an artificial microscale swimmer that uses a chemical reaction catalyzed on its own surface to achieve autonomous propulsion is fully characterized experimentally. It is shown that at short times it has a substantial component of directed motion, with a velocity that depends on the concentration of fuel molecules. At longer times, the motion reverts to a random walk with a substantially enhanced diffusion coefficient. Our results suggest strategies for designing artificial chemotactic systems.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Magnetic helical micromachines: fabrication, controlled swimming, and cargo transport.

                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Proceedings of the National Academy of Sciences
                Proc Natl Acad Sci USA
                Proceedings of the National Academy of Sciences
                0027-8424
                1091-6490
                June 28 2021
                July 06 2021
                June 28 2021
                July 06 2021
                : 118
                : 27
                : e2101807118
                Article
                10.1073/pnas.2101807118
                34183394
                02131735-53d2-475b-8bef-fef59c939921
                © 2021

                Free to read

                https://www.pnas.org/site/aboutpnas/licenses.xhtml

                History

                Comments

                Comment on this article