20
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Cell differentiation defines acute and chronic infection cell types in Staphylococcus aureus

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A central question to biology is how pathogenic bacteria initiate acute or chronic infections. Here we describe a genetic program for cell-fate decision in the opportunistic human pathogen Staphylococcus aureus, which generates the phenotypic bifurcation of the cells into two genetically identical but different cell types during the course of an infection. Whereas one cell type promotes the formation of biofilms that contribute to chronic infections, the second type is planktonic and produces the toxins that contribute to acute bacteremia. We identified a bimodal switch in the agr quorum sensing system that antagonistically regulates the differentiation of these two physiologically distinct cell types. We found that extracellular signals affect the behavior of the agr bimodal switch and modify the size of the specialized subpopulations in specific colonization niches. For instance, magnesium-enriched colonization niches causes magnesium binding to S. aureusteichoic acids and increases bacterial cell wall rigidity. This signal triggers a genetic program that ultimately downregulates the agr bimodal switch. Colonization niches with different magnesium concentrations influence the bimodal system activity, which defines a distinct ratio between these subpopulations; this in turn leads to distinct infection outcomes in vitro and in an in vivo murine infection model. Cell differentiation generates physiological heterogeneity in clonal bacterial infections and helps to determine the distinct infection types.

          eLife digest

          While in hospital, patients can be unwittingly exposed to bacteria that can cause disease. These hospital-associated bacteria can lead to potentially life-threatening infections that may also complicate the treatment of the patients’ existing medical conditions. Staphylococcus aureus is one such bacterium, and it can cause several types of infection including pneumonia, blood infections and long-term infections of prosthetic devices.

          It is thought that S. aureus is able to cause so many different types of infection because it is capable of colonizing distinct tissues and organs in various parts of the body. Understanding the biological processes that drive the different infections is crucial to improving how these infections are treated.

          S. aureus lives either as an independent, free-swimming cell or as part of a community known as a biofilm. These different lifestyles dictate the type of infection the bacterium can cause, with free-swimming cells producing toxins that contribute to intense, usually short-lived, infections and biofilms promoting longer-term infections that are difficult to eradicate. However, it is not clear how a population of S. aureus cells chooses to adopt a particular lifestyle and whether there are any environmental signals that influence this decision.

          Here, Garcia-Betancur et al. found that S. aureus populations contain small groups of cells that have already specialized into a particular lifestyle. These groups of cells collectively influence the choice made by other cells in the population. While both lifestyles will be represented in the population, environmental factors influence the numbers of cells that initially adopt each type of lifestyle, which ultimately affects the choice made by the rest of the population. For example, if the bacteria colonize a tissue or organ that contains high levels of magnesium ions, the population is more likely to form biofilms.

          In the future, the findings of Garcia-Betancur et al. may help us to predict how an infection may develop in a particular patient, which may help to diagnose the infection more quickly and allow it to be treated more effectively.

          Related collections

          Most cited references109

          • Record: found
          • Abstract: found
          • Article: not found

          Invasive methicillin-resistant Staphylococcus aureus infections in the United States.

          As the epidemiology of infections with methicillin-resistant Staphylococcus aureus (MRSA) changes, accurate information on the scope and magnitude of MRSA infections in the US population is needed. To describe the incidence and distribution of invasive MRSA disease in 9 US communities and to estimate the burden of invasive MRSA infections in the United States in 2005. Active, population-based surveillance for invasive MRSA in 9 sites participating in the Active Bacterial Core surveillance (ABCs)/Emerging Infections Program Network from July 2004 through December 2005. Reports of MRSA were investigated and classified as either health care-associated (either hospital-onset or community-onset) or community-associated (patients without established health care risk factors for MRSA). Incidence rates and estimated number of invasive MRSA infections and in-hospital deaths among patients with MRSA in the United States in 2005; interval estimates of incidence excluding 1 site that appeared to be an outlier with the highest incidence; molecular characterization of infecting strains. There were 8987 observed cases of invasive MRSA reported during the surveillance period. Most MRSA infections were health care-associated: 5250 (58.4%) were community-onset infections, 2389 (26.6%) were hospital-onset infections; 1234 (13.7%) were community-associated infections, and 114 (1.3%) could not be classified. In 2005, the standardized incidence rate of invasive MRSA was 31.8 per 100,000 (interval estimate, 24.4-35.2). Incidence rates were highest among persons 65 years and older (127.7 per 100,000; interval estimate, 92.6-156.9), blacks (66.5 per 100,000; interval estimate, 43.5-63.1), and males (37.5 per 100,000; interval estimate, 26.8-39.5). There were 1598 in-hospital deaths among patients with MRSA infection during the surveillance period. In 2005, the standardized mortality rate was 6.3 per 100,000 (interval estimate, 3.3-7.5). Molecular testing identified strains historically associated with community-associated disease outbreaks recovered from cultures in both hospital-onset and community-onset health care-associated infections in all surveillance areas. Invasive MRSA infection affects certain populations disproportionately. It is a major public health problem primarily related to health care but no longer confined to intensive care units, acute care hospitals, or any health care institution.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Persister cells, dormancy and infectious disease.

            Kim Lewis (2007)
            Several well-recognized puzzles in microbiology have remained unsolved for decades. These include latent bacterial infections, unculturable microorganisms, persister cells and biofilm multidrug tolerance. Accumulating evidence suggests that these seemingly disparate phenomena result from the ability of bacteria to enter into a dormant (non-dividing) state. The molecular mechanisms that underlie the formation of dormant persister cells are now being unravelled and are the focus of this Review.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development.

              The formation of complex bacterial communities known as biofilms begins with the interaction of planktonic cells with a surface in response to appropriate environmental signals. We report the isolation and characterization of mutants of Pseudomonas aeruginosa PA14 defective in the initiation of biofilm formation on an abiotic surface, polyvinylchloride (PVC) plastic. These mutants are designated surface attachment defective (sad ). Two classes of sad mutants were analysed: (i) mutants defective in flagellar-mediated motility and (ii) mutants defective in biogenesis of the polar-localized type IV pili. We followed the development of the biofilm formed by the wild type over 8 h using phase-contrast microscopy. The wild-type strain first formed a monolayer of cells on the abiotic surface, followed by the appearance of microcolonies that were dispersed throughout the monolayer of cells. Using time-lapse microscopy, we present evidence that microcolonies form by aggregation of cells present in the monolayer. As observed with the wild type, strains with mutations in genes required for the synthesis of type IV pili formed a monolayer of cells on the PVC plastic. However, in contrast to the wild-type strain, the type IV pili mutants did not develop microcolonies over the course of the experiments, suggesting that these structures play an important role in microcolony formation. Very few cells of a non-motile strain (carrying a mutation in flgK) attached to PVC even after 8 h of incubation, suggesting a role for flagella and/or motility in the initial cell-to-surface interactions. The phenotype of these mutants thus allows us to initiate the dissection of the developmental pathway leading to biofilm formation.
                Bookmark

                Author and article information

                Contributors
                Role: Reviewing Editor
                Journal
                eLife
                Elife
                eLife
                eLife
                eLife Sciences Publications, Ltd
                2050-084X
                12 September 2017
                2017
                : 6
                : e28023
                Affiliations
                [1 ]deptInstitute for Molecular Infection Biology University of Würzburg WürzburgGermany
                [2 ]deptResearch Center for Infectious Diseases University of Würzburg WürzburgGermany
                [3 ]deptSchool of Computing Science Newcastle University NewcastleUnited Kingdom
                [4 ]deptDepartment of Mathematics Technical University of Munich GarchingGermany
                [5 ]deptInstitute of Clinical Biochemistry and Pathobiochemistry University Hospital Würzburg WürzburgGermany
                [6 ]National Center for Biotechnology MadridSpain
                Harvard Medical School United States
                Harvard Medical School United States
                Author information
                http://orcid.org/0000-0003-3371-3384
                http://orcid.org/0000-0002-1576-1174
                http://orcid.org/0000-0002-8627-3813
                Article
                28023
                10.7554/eLife.28023
                5595439
                28893374
                02107a14-9b8c-462b-80c7-256a487129f8
                © 2017, García-Betancur et al

                This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

                History
                : 23 April 2017
                : 09 August 2017
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/100010663, H2020 European Research Council;
                Award ID: 335568
                Award Recipient :
                Funded by: FundRef http://dx.doi.org/10.13039/501100001659, Deutsche Forschungsgemeinschaft;
                Award ID: Lo1804-2/2
                Award Recipient :
                Funded by: FundRef http://dx.doi.org/10.13039/501100003329, Ministerio de Economía y Competitividad;
                Award ID: BFU2014-55601-P
                Award Recipient :
                The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
                Categories
                Research Article
                Microbiology and Infectious Disease
                Custom metadata
                During Staphylococcus aureus infections, bacterial cells bifurcate into distinct, specialized cell types that localize physically in different colonization tissues to simultaneously generate different infection types.

                Life sciences
                staphylococcus aureus,cell differentiation,opportunistic infection,other
                Life sciences
                staphylococcus aureus, cell differentiation, opportunistic infection, other

                Comments

                Comment on this article