4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Gas-foamed poly(lactide-co-glycolide) and poly(lactide-co-glycolide) with bioactive glass fibres demonstrate insufficient bone repair in lapine osteochondral defects.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Deep osteochondral defects may leave voids in the subchondral bone, increasing the risk of joint structure collapse. To ensure a stable foundation for the cartilage repair, bone grafts can be used for filling these defects. Poly(lactide-co-glycolide) (PLGA) is a biodegradable material that improves bone healing and supports bone matrix deposition. We compared the reparative capacity of two investigative macroporous PLGA-based biomaterials with two commercially available bone graft substitutes in the bony part of an intra-articular bone defect created in the lapine femur. New Zealand white rabbits (n = 40) were randomized into five groups. The defects, 4 mm in diameter and 8 mm deep, were filled with neat PLGA; a composite material combining PLGA and bioactive glass fibres (PLGA-BGf); commercial beta-tricalcium phosphate (β-TCP) granules; or commercial bioactive glass (BG) granules. The fifth group was left untreated for spontaneous repair. After three months, the repair tissue was evaluated with X-ray microtomography and histology. Relative values comparing the operated knee with its contralateral control were calculated. The relative bone volume fraction (∆BV/TV) was largest in the β-TCP group (p ≤ 0.012), which also showed the most abundant osteoid. BG resulted in improved bone formation, whereas defects in the PLGA-BGf group were filled with fibrous tissue. Repair with PLGA did not differ from spontaneous repair. The PLGA, PLGA-BGf, and spontaneous groups showed thicker and sparser trabeculae than the commercial controls. We conclude that bone repair with β-TCP and BG granules was satisfactory, whereas the investigational PLGA-based materials were only as good as or worse than spontaneous repair.

          Related collections

          Author and article information

          Journal
          J Tissue Eng Regen Med
          Journal of tissue engineering and regenerative medicine
          Wiley
          1932-7005
          1932-6254
          March 2019
          : 13
          : 3
          Affiliations
          [1 ] Department of Orthopaedics and Traumatology, Clinicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
          [2 ] Department of Electronics and Communications Engineering, Tampere University of Technology, BioMediTech, Institute of Biosciences and Medical Technology, Tampere, Finland.
          [3 ] Department of Orthopaedics and Traumatology, Helsinki University Hospital, Helsinki, Finland.
          [4 ] Department of Medical Physics, Imaging Centre, Tampere University Hospital, Tampere, Finland.
          [5 ] Laboratory of Polymer Technology, Centre of Excellence in Functional Materials at Biological Interfaces, Åbo Akademi University, Turku, Finland.
          Article
          10.1002/term.2801
          30644174
          01fce02d-9028-43e7-b7a2-86b3f2ff1ecc
          © 2019 John Wiley & Sons, Ltd.
          History

          animal model,biomaterial,bone repair,intra-articular,poly(lactide-co-glycolide)

          Comments

          Comment on this article