2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Lysosomal damage sensing and lysophagy initiation by SPG20-ITCH

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references68

          • Record: found
          • Abstract: found
          • Article: not found

          MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification.

          Efficient analysis of very large amounts of raw data for peptide identification and protein quantification is a principal challenge in mass spectrometry (MS)-based proteomics. Here we describe MaxQuant, an integrated suite of algorithms specifically developed for high-resolution, quantitative MS data. Using correlation analysis and graph theory, MaxQuant detects peaks, isotope clusters and stable amino acid isotope-labeled (SILAC) peptide pairs as three-dimensional objects in m/z, elution time and signal intensity space. By integrating multiple mass measurements and correcting for linear and nonlinear mass offsets, we achieve mass accuracy in the p.p.b. range, a sixfold increase over standard techniques. We increase the proportion of identified fragmentation spectra to 73% for SILAC peptide pairs via unambiguous assignment of isotope and missed-cleavage state and individual mass precision. MaxQuant automatically quantifies several hundred thousand peptides per SILAC-proteome experiment and allows statistically robust identification and quantification of >4,000 proteins in mammalian cell lysates.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Andromeda: a peptide search engine integrated into the MaxQuant environment.

            A key step in mass spectrometry (MS)-based proteomics is the identification of peptides in sequence databases by their fragmentation spectra. Here we describe Andromeda, a novel peptide search engine using a probabilistic scoring model. On proteome data, Andromeda performs as well as Mascot, a widely used commercial search engine, as judged by sensitivity and specificity analysis based on target decoy searches. Furthermore, it can handle data with arbitrarily high fragment mass accuracy, is able to assign and score complex patterns of post-translational modifications, such as highly phosphorylated peptides, and accommodates extremely large databases. The algorithms of Andromeda are provided. Andromeda can function independently or as an integrated search engine of the widely used MaxQuant computational proteomics platform and both are freely available at www.maxquant.org. The combination enables analysis of large data sets in a simple analysis workflow on a desktop computer. For searching individual spectra Andromeda is also accessible via a web server. We demonstrate the flexibility of the system by implementing the capability to identify cofragmented peptides, significantly improving the total number of identified peptides.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Stop and go extraction tips for matrix-assisted laser desorption/ionization, nanoelectrospray, and LC/MS sample pretreatment in proteomics.

              Proteomics is critically dependent on optimal sample preparation. Particularly, the interface between protein digestion and mass spectrometric analysis has a large influence on the overall quality and sensitivity of the analysis. We here describe a novel procedure in which a very small disk of beads embedded in a Teflon meshwork is placed as a microcolumn into pipet tips. Termed Stage, for STop And Go Extraction, the procedure has been implemented with commercially available material (C18 Empore Disks (3M, Minneapolis, MN)) as frit and separation material. The disk is introduced in a simple and fast process yielding a convenient and completely reliable procedure for the production of self-packed microcolumns in pipet tips. It is held in place free of obstacles solely by the narrowing tip, ensuring optimized loading and elution of analytes. Five disks are conveniently placed in 1 min, adding 300 micro/min for the packed column using manual force) while eliminating the possibility of blocking. The loading capacity of C18-StageTips (column bed: 0.4 mm diameter, 0.5 mm length) is 2-4 microg of protein digest, which can be increased by using larger diameter or stacked disks. Five femtomole of tryptic BSA digest could be recovered quantitatively. We have found that the Stage system is well-suited as a universal sample preparation system for proteomics.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Molecular Cell
                Molecular Cell
                Elsevier BV
                10972765
                March 2024
                March 2024
                Article
                10.1016/j.molcel.2024.02.029
                38503285
                01e5bdad-fcf3-4f0c-b10a-0898e976e39e
                © 2024

                https://www.elsevier.com/tdm/userlicense/1.0/

                http://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article