4
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Differences of respiratory mechanics in mechanical ventilation of acute respiratory distress syndrome between patients with COVID-19 and Influenza A

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Whether COVID-19-induced acute respiratory distress syndrome (ARDS) should be approached differently in terms of mechanical ventilation therapy compared to other virus-induced ARDS is debatable. Therefore, we aimed to ascertain whether the respiratory mechanical characteristics of COVID-19-induced ARDS differ from those of influenza A induced ARDS, in order to establish a rationale for mechanical ventilation therapy in COVID-19-induced ARDS.

          Methods

          This was a retrospective cohort study comparing patients with COVID-19-induced ARDS and influenza A induced ARDS. We included intensive care unit (ICU) patients with COVID-19 or Influenza A aged ≥ 19, who were diagnosed with ARDS according to the Berlin definition between January 2015 and July 2021. Ventilation parameters for respiratory mechanics were collected at specific times on days one, three, and seven after intubation.

          Results

          The median age of the 87 participants was 71.0 (62.0–78.0) years old, and 63.2% were male. The ratio of partial pressure of oxygen in arterial blood to the fractional of inspiratory oxygen concentration in COVID-19-induced ARDS was lower than that in influenza A induced ARDS during the initial stages of mechanical ventilation (influenza A induced ARDS 216.1 vs. COVID-19-induced ARDS 167.9, p = 0.009, day 1). The positive end expiratory pressure remained consistently higher in the COVID-19 group throughout the follow-up period (7.0 vs. 10.0, p < 0.001, day 1). COVID-19 and influenza A initially showed different directions for peak inspiratory pressure and dynamic compliance; however, after day 3, both groups exhibited similar directions. Dynamic driving pressure exhibited opposite trends between the two groups during mechanical ventilation.

          Conclusions

          Respiratory mechanics show clear differences between COVID-19-induced ARDS and influenza A induced ARDS. Based on these findings, we can consider future treatment strategies for COVID-19-induced ARDS.

          Related collections

          Most cited references26

          • Record: found
          • Abstract: found
          • Article: not found

          Acute respiratory distress syndrome: the Berlin Definition.

          The acute respiratory distress syndrome (ARDS) was defined in 1994 by the American-European Consensus Conference (AECC); since then, issues regarding the reliability and validity of this definition have emerged. Using a consensus process, a panel of experts convened in 2011 (an initiative of the European Society of Intensive Care Medicine endorsed by the American Thoracic Society and the Society of Critical Care Medicine) developed the Berlin Definition, focusing on feasibility, reliability, validity, and objective evaluation of its performance. A draft definition proposed 3 mutually exclusive categories of ARDS based on degree of hypoxemia: mild (200 mm Hg < PaO2/FIO2 ≤ 300 mm Hg), moderate (100 mm Hg < PaO2/FIO2 ≤ 200 mm Hg), and severe (PaO2/FIO2 ≤ 100 mm Hg) and 4 ancillary variables for severe ARDS: radiographic severity, respiratory system compliance (≤40 mL/cm H2O), positive end-expiratory pressure (≥10 cm H2O), and corrected expired volume per minute (≥10 L/min). The draft Berlin Definition was empirically evaluated using patient-level meta-analysis of 4188 patients with ARDS from 4 multicenter clinical data sets and 269 patients with ARDS from 3 single-center data sets containing physiologic information. The 4 ancillary variables did not contribute to the predictive validity of severe ARDS for mortality and were removed from the definition. Using the Berlin Definition, stages of mild, moderate, and severe ARDS were associated with increased mortality (27%; 95% CI, 24%-30%; 32%; 95% CI, 29%-34%; and 45%; 95% CI, 42%-48%, respectively; P < .001) and increased median duration of mechanical ventilation in survivors (5 days; interquartile [IQR], 2-11; 7 days; IQR, 4-14; and 9 days; IQR, 5-17, respectively; P < .001). Compared with the AECC definition, the final Berlin Definition had better predictive validity for mortality, with an area under the receiver operating curve of 0.577 (95% CI, 0.561-0.593) vs 0.536 (95% CI, 0.520-0.553; P < .001). This updated and revised Berlin Definition for ARDS addresses a number of the limitations of the AECC definition. The approach of combining consensus discussions with empirical evaluation may serve as a model to create more accurate, evidence-based, critical illness syndrome definitions and to better inform clinical care, research, and health services planning.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. The Acute Respiratory Distress Syndrome Network.

            Traditional approaches to mechanical ventilation use tidal volumes of 10 to 15 ml per kilogram of body weight and may cause stretch-induced lung injury in patients with acute lung injury and the acute respiratory distress syndrome. We therefore conducted a trial to determine whether ventilation with lower tidal volumes would improve the clinical outcomes in these patients. Patients with acute lung injury and the acute respiratory distress syndrome were enrolled in a multicenter, randomized trial. The trial compared traditional ventilation treatment, which involved an initial tidal volume of 12 ml per kilogram of predicted body weight and an airway pressure measured after a 0.5-second pause at the end of inspiration (plateau pressure) of 50 cm of water or less, with ventilation with a lower tidal volume, which involved an initial tidal volume of 6 ml per kilogram of predicted body weight and a plateau pressure of 30 cm of water or less. The primary outcomes were death before a patient was discharged home and was breathing without assistance and the number of days without ventilator use from day 1 to day 28. The trial was stopped after the enrollment of 861 patients because mortality was lower in the group treated with lower tidal volumes than in the group treated with traditional tidal volumes (31.0 percent vs. 39.8 percent, P=0.007), and the number of days without ventilator use during the first 28 days after randomization was greater in this group (mean [+/-SD], 12+/-11 vs. 10+/-11; P=0.007). The mean tidal volumes on days 1 to 3 were 6.2+/-0.8 and 11.8+/-0.8 ml per kilogram of predicted body weight (P<0.001), respectively, and the mean plateau pressures were 25+/-6 and 33+/-8 cm of water (P<0.001), respectively. In patients with acute lung injury and the acute respiratory distress syndrome, mechanical ventilation with a lower tidal volume than is traditionally used results in decreased mortality and increases the number of days without ventilator use.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              COVID-19 Does Not Lead to a “Typical” Acute Respiratory Distress Syndrome

              To the Editor: In northern Italy, an overwhelming number of patients with coronavirus disease (COVID-19) pneumonia and acute respiratory failure have been admitted to our ICUs. Attention is primarily focused on increasing the number of beds, ventilators, and intensivists brought to bear on the problem, while the clinical approach to these patients is the one typically applied to severe acute respiratory distress syndrome (ARDS), namely, high positive end-expiratory pressure (PEEP) and prone positioning. However, the patients with COVID-19 pneumonia, despite meeting the Berlin definition of ARDS, present an atypical form of the syndrome. Indeed, the primary characteristic we are observing (and has been confirmed by colleagues in other hospitals) is a dissociation between their relatively well-preserved lung mechanics and the severity of hypoxemia. As shown in our first 16 patients (Figure 1), a respiratory system compliance of 50.2 ± 14.3 ml/cm H2O is associated with a shunt fraction of 0.50 ± 0.11. Such a wide discrepancy is virtually never seen in most forms of ARDS. Relatively high compliance indicates a well-preserved lung gas volume in this patient cohort, in sharp contrast to expectations for severe ARDS. Figure 1. (A) Distributions of the observations of the compliance values observed in our cohort of patients. (B) Distributions of the observations of the right-to-left shunt values observed in our cohort of patients. A possible explanation for such severe hypoxemia occurring in compliant lungs is a loss of lung perfusion regulation and hypoxic vasoconstriction. Actually, in ARDS, the ratio of the shunt fraction to the fraction of gasless tissue is highly variable, with a mean of 1.25 ± 0.80 (1). In eight of our patients with a computed tomography scan, however, we measured a ratio of 3.0 ± 2.1, suggesting a remarkable hyperperfusion of gasless tissue. If this is the case, the increases in oxygenation with high PEEP and/or prone positioning are not primarily due to recruitment, the usual mechanism in ARDS (2), but instead, in these patients with poorly recruitable lungs (3), result from the redistribution of perfusion in response to pressure and/or gravitational forces. We should consider that 1) in patients who are treated with continuous positive airway pressure or noninvasive ventilation and who present with clinical signs of excessive inspiratory efforts, intubation should be prioritized to avoid excessive intrathoracic negative pressures and self-inflicted lung injury (4); 2) high PEEP in a poorly recruitable lung tends to result in severe hemodynamic impairment and fluid retention; and 3) prone positioning of patients with relatively high compliance provides a modest benefit at the cost of a high demand for stressed human resources. Given the above considerations, the best we can do while ventilating these patients is to “buy time” while causing minimal additional damage, by maintaining the lowest possible PEEP and gentle ventilation. We need to be patient.
                Bookmark

                Author and article information

                Contributors
                rose4359@gmail.com
                hihogogo@yuhs.ac
                Journal
                Respir Res
                Respir Res
                Respiratory Research
                BioMed Central (London )
                1465-9921
                1465-993X
                7 March 2024
                7 March 2024
                2024
                : 25
                : 112
                Affiliations
                [1 ]Division of Pulmonology, Department of Internal Medicine, National Health Insurance Service Ilsan Hospital, ( https://ror.org/03c8k9q07) Goyang, Republic of Korea
                [2 ]GRID grid.15444.30, ISNI 0000 0004 0470 5454, Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, , Severance Hospital, Yonsei University College of Medicine, ; 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722 Republic of Korea
                [3 ]Division of Pulmonary, Department of Internal Medicine, Inha University Hospital, Inha University College of Medicine, 27, Inhang-Ro, Jung-Gu, Inchon, 22332 Republic of Korea
                Article
                2730
                10.1186/s12931-024-02730-4
                10919012
                38448933
                01d3f615-d88d-4119-a4ae-9aad18c7db3c
                © The Author(s) 2024

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                History
                : 24 November 2023
                : 13 February 2024
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/100019266, Korea Medical Device Development Fund;
                Award ID: RS-2020-KD000032
                Funded by: FundRef http://dx.doi.org/10.13039/501100003725, National Research Foundation of Korea;
                Award ID: RS-2023-00252863
                Categories
                Research
                Custom metadata
                © BioMed Central Ltd., part of Springer Nature 2024

                Respiratory medicine
                acute respiratory distress syndrome,covid-19,influenza a,mechanical ventilation

                Comments

                Comment on this article