17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Urea and Ammonia Metabolism and the Control of Renal Nitrogen Excretion

      , ,
      Clinical Journal of the American Society of Nephrology
      American Society of Nephrology (ASN)

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Renal nitrogen metabolism primarily involves urea and ammonia metabolism, and is essential to normal health. Urea is the largest circulating pool of nitrogen, excluding nitrogen in circulating proteins, and its production changes in parallel to the degradation of dietary and endogenous proteins. In addition to serving as a way to excrete nitrogen, urea transport, mediated through specific urea transport proteins, mediates a central role in the urine concentrating mechanism. Renal ammonia excretion, although often considered only in the context of acid-base homeostasis, accounts for approximately 10% of total renal nitrogen excretion under basal conditions, but can increase substantially in a variety of clinical conditions. Because renal ammonia metabolism requires intrarenal ammoniagenesis from glutamine, changes in factors regulating renal ammonia metabolism can have important effects on glutamine in addition to nitrogen balance. This review covers aspects of protein metabolism and the control of the two major molecules involved in renal nitrogen excretion: urea and ammonia. Both urea and ammonia transport can be altered by glucocorticoids and hypokalemia, two conditions that also affect protein metabolism. Clinical conditions associated with altered urine concentrating ability or water homeostasis can result in changes in urea excretion and urea transporters. Clinical conditions associated with altered ammonia excretion can have important effects on nitrogen balance.

          Related collections

          Most cited references101

          • Record: found
          • Abstract: found
          • Article: not found

          Bicarbonate supplementation slows progression of CKD and improves nutritional status.

          Bicarbonate supplementation preserves renal function in experimental chronic kidney disease (CKD), but whether the same benefit occurs in humans is unknown. Here, we randomly assigned 134 adult patients with CKD (creatinine clearance [CrCl] 15 to 30 ml/min per 1.73 m(2)) and serum bicarbonate 16 to 20 mmol/L to either supplementation with oral sodium bicarbonate or standard care for 2 yr. The primary end points were rate of CrCl decline, the proportion of patients with rapid decline of CrCl (>3 ml/min per 1.73 m(2)/yr), and ESRD (CrCl <10 ml/min). Secondary end points were dietary protein intake, normalized protein nitrogen appearance, serum albumin, and mid-arm muscle circumference. Compared with the control group, decline in CrCl was slower with bicarbonate supplementation (5.93 versus 1.88 ml/min 1.73 m(2); P < 0.0001). Patients supplemented with bicarbonate were significantly less likely to experience rapid progression (9 versus 45%; relative risk 0.15; 95% confidence interval 0.06 to 0.40; P < 0.0001). Similarly, fewer patients supplemented with bicarbonate developed ESRD (6.5 versus 33%; relative risk 0.13; 95% confidence interval 0.04 to 0.40; P < 0.001). Nutritional parameters improved significantly with bicarbonate supplementation, which was well tolerated. This study demonstrates that bicarbonate supplementation slows the rate of progression of renal failure to ESRD and improves nutritional status among patients with CKD.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Estimation of the renal net acid excretion by adults consuming diets containing variable amounts of protein.

            F Manz, T Remer (1994)
            The object of this study was to determine whether it is possible to reliably estimate the renal net acid excretion (NAE) produced by adults consuming different amounts of dietary protein. A physiologically based calculation model that corrects for intestinal absorption of minerals and sulfur-containing protein and assumes a rate of urinary excretion of organic acids proportional to body surface area was used to estimate NAE. Urinary excretion of different minerals and NAE was measured during the last 48 h of each of four separate 5-d diet periods in six healthy adults. On the basis of food tables, the four nearly isoenergetic diets (one lacto-vegetarian and one high- and two moderate-protein diets) were estimated to yield the following NAE values: 3.7, 117.5, 62.2, and 102.2 mEq/d, respectively. The analytically determined urinary NAE (24.1 +/- 10.7, 135.5 +/- 16.4, 69.7 +/- 21.4, and 112.6 +/- 10.9 mEq/d) corresponded reasonably well to these estimates, suggesting that the calculation model is appropriate to predict the renal NAE from nutrient intake and anthropometric data.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Stat3 activation links a C/EBPδ to myostatin pathway to stimulate loss of muscle mass.

              Catabolic conditions like chronic kidney disease (CKD) cause loss of muscle mass by unclear mechanisms. In muscle biopsies from CKD patients, we found activated Stat3 (p-Stat3) and hypothesized that p-Stat3 initiates muscle wasting. We created mice with muscle-specific knockout (KO) that prevents activation of Stat3. In these mice, losses of body and muscle weights were suppressed in models with CKD or acute diabetes. A small-molecule that inhibits Stat3 activation produced similar responses, suggesting a potential for translation strategies. Using CCAAT/enhancer-binding protein δ (C/EBPδ) KO mice and C2C12 myotubes with knockdown of C/EBPδ or myostatin, we determined that p-Stat3 initiates muscle wasting via C/EBPδ, stimulating myostatin, a negative muscle growth regulator. C/EBPδ KO also improved survival of CKD mice. We verified that p-Stat3, C/EBPδ, and myostatin were increased in muscles of CKD patients. The pathway from p-Stat3 to C/EBPδ to myostatin and muscle wasting could identify therapeutic targets that prevent muscle wasting.
                Bookmark

                Author and article information

                Journal
                Clinical Journal of the American Society of Nephrology
                CJASN
                American Society of Nephrology (ASN)
                1555-9041
                1555-905X
                August 07 2015
                August 07 2015
                August 07 2015
                July 30 2014
                : 10
                : 8
                : 1444-1458
                Article
                10.2215/CJN.10311013
                25078422
                01760441-fbbf-4094-b79b-8fba8125dfef
                © 2014
                History

                Comments

                Comment on this article