17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Extra-Cellular But Extra-Ordinarily Important for Cells: Apoplastic Reactive Oxygen Species Metabolism

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Reactive oxygen species (ROS), by their very nature, are highly reactive, and it is no surprise that they can cause damage to organic molecules. In cells, ROS are produced as byproducts of many metabolic reactions, but plants are prepared for this ROS output. Even though extracellular ROS generation constitutes only a minor part of a cell’s total ROS level, this fraction is of extraordinary importance. In an active apoplastic ROS burst, it is mainly the respiratory burst oxidases and peroxidases that are engaged, and defects of these enzymes can affect plant development and stress responses. It must be highlighted that there are also other less well-known enzymatic or non-enzymatic ROS sources. There is a need for ROS detoxification in the apoplast, and almost all cellular antioxidants are present in this space, but the activity of antioxidant enzymes and the concentration of low-mass antioxidants is very low. The low antioxidant efficiency in the apoplast allows ROS to accumulate easily, which is a condition for ROS signaling. Therefore, the apoplastic ROS/antioxidant homeostasis is actively engaged in the reception and reaction to many biotic and abiotic stresses.

          Related collections

          Most cited references200

          • Record: found
          • Abstract: found
          • Article: not found

          Role of reactive oxygen species (ROS) in apoptosis induction.

          Reactive oxygen species (ROS) and mitochondria play an important role in apoptosis induction under both physiologic and pathologic conditions. Interestingly, mitochondria are both source and target of ROS. Cytochrome c release from mitochondria, that triggers caspase activation, appears to be largely mediated by direct or indirect ROS action. On the other hand, ROS have also anti-apoptotic effects. This review focuses on the role of ROS in the regulation of apoptosis, especially in inflammatory cells.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Reactive oxygen species produced by NADPH oxidase regulate plant cell growth.

              Cell expansion is a central process in plant morphogenesis, and the elongation of roots and root hairs is essential for uptake of minerals and water from the soil. Ca2+ influx from the extracellular store is required for (and sets the rates of) cell elongation in roots. Arabidopsis thaliana rhd2 mutants are defective in Ca2+ uptake and consequently cell expansion is compromised--rhd2 mutants have short root hairs and stunted roots. To determine the regulation of Ca2+ acquisition in growing root cells we show here that RHD2 is an NADPH oxidase, a protein that transfers electrons from NADPH to an electron acceptor leading to the formation of reactive oxygen species (ROS). We show that ROS accumulate in growing wild-type (WT) root hairs but their levels are markedly decreased in rhd2 mutants. Blocking the activity of the NADPH oxidase with diphenylene iodonium (DPI) inhibits ROS formation and phenocopies Rhd2-. Treatment of rhd2 roots with ROS partly suppresses the mutant phenotype and stimulates the activity of plasma membrane hyperpolarization-activated Ca2+ channels, the predominant root Ca2+ acquisition system. This indicates that NADPH oxidases control development by making ROS that regulate plant cell expansion through the activation of Ca2+ channels.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Plant Sci
                Front Plant Sci
                Front. Plant Sci.
                Frontiers in Plant Science
                Frontiers Media S.A.
                1664-462X
                22 August 2017
                2017
                : 8
                : 1353
                Affiliations
                [1]Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw Warsaw, Poland
                Author notes

                Edited by: Simon Gilroy, University of Wisconsin-Madison, United States

                Reviewed by: Nobuhiro Suzuki, Sophia University, Japan; Won-Gyu Choi, University of Nevada, Reno, United States

                *Correspondence: Bożena Szal, szal@ 123456biol.uw.edu.pl Anna Podgórska, apodgorski@ 123456biol.uw.edu.pl

                This article was submitted to Plant Cell Biology, a section of the journal Frontiers in Plant Science

                Article
                10.3389/fpls.2017.01353
                5572287
                28878783
                0158bc7f-7943-46bc-9c5d-e22b1dbc3090
                Copyright © 2017 Podgórska, Burian and Szal.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 16 March 2017
                : 20 July 2017
                Page count
                Figures: 3, Tables: 2, Equations: 0, References: 223, Pages: 20, Words: 0
                Funding
                Funded by: Narodowym Centrum Nauki 10.13039/501100004442
                Award ID: 2014/13/B/NZ3/00847
                Categories
                Plant Science
                Review

                Plant science & Botany
                antioxidants,apoplastic reactive oxygen species,biotic and abiotic stress,detoxification,respiratory burst enzymes

                Comments

                Comment on this article