3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Role played by brainstem neurons in regulating testosterone secretion via a direct neural pathway between the hypothalamus and the testes.

      1 , ,
      Endocrinology
      The Endocrine Society

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We previously reported anatomical and functional evidence for a direct, inhibitory neural pathway that regulates testosterone (T) secretion independently of the pituitary. This pathway is activated by the intracerebroventricular (icv) administration of agents that stimulate stress responses, such as IL-1beta, corticotropin-releasing factor (CRF), and norepinephrine (NE), which results in a blunted T response to the administration of human chorionic gonadotropin (hCG). Blunting of the T response is mediated by central beta-adrenergic receptor stimulation. CRF, but not ethanol (EtOH) or IL-1beta, acts directly on the paraventricular nucleus of the hypothalamus to activate the pathway. Here we explored the role played by brain areas hypothesized to be part of this pathway, such as neurons in the dorsal pons [including the locus coeruleus (LC) of the brainstem], where NE is produced. Microinfusion of EtOH or IL-1beta, but not CRF, into these neurons activated the pathway. Electrolytic lesions of this region significantly reversed the inhibitory effect of icv-administered EtOH on hCG-induced T release, while having no effect on the ability of IL-1beta or CRF to do so. However, the icv administration of IL-1beta, EtOH, or CRF, in doses that rapidly inhibit the T response to hCG, all caused a significant depletion of NE from the LC. Collectively, these results indicate that in addition to the paraventricular nucleus, the brainstem area containing the LC is part of a neural pathway that connects the brain to the testes independently of the pituitary. We also speculate that EtOH may stimulate this pathway through NE-dependent activation of the dorsal pons.

          Related collections

          Author and article information

          Journal
          Endocrinology
          Endocrinology
          The Endocrine Society
          0013-7227
          0013-7227
          Jun 2006
          : 147
          : 6
          Affiliations
          [1 ] The Clayton Foundation Laboratories for Peptide Biology, The Salk Institute, La Jolla, California 92037, USA.
          Article
          en.2005-1358
          10.1210/en.2005-1358
          16556770
          01440f93-c672-438f-9dee-1dc03a603533
          History

          Comments

          Comment on this article