16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      XMAP215 is a microtubule nucleation factor that functions synergistically with the gamma-tubulin ring complex

      research-article
      2 , 3 , 2 , 3
      Nature cell biology

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          How microtubules (MT) are generated in the cell is a major question in understanding how the cytoskeleton is assembled. For several decades, γ-tubulin has been accepted as the cell’s universal MT nucleator. Although there is evidence that γ-tubulin complexes are not the sole MT nucleators, identification of other nucleation factors has proven difficult. Here, we report that the well-characterized MT polymerase XMAP215 (chTOG/Msps/Stu2p/Alp14/Dis1 homologue) is essential for MT nucleation in Xenopus egg extracts. The concentration of XMAP215 determines the extent of MT nucleation. Even though XMAP215 and γ-tubulin ring complex (γ-TuRC) possess minimal nucleation activity individually, together these factors synergistically stimulate MT nucleation in vitro. The N-terminal TOG domains 1–5 of XMAP215 bind αβ-tubulin and promote MT polymerization, while the conserved C-terminus is required for efficient MT nucleation and directly binds γ-tubulin. In sum, XMAP215 and γ-TuRC together function as the principal nucleation module that generates MTs in cells.

          Related collections

          Most cited references55

          • Record: found
          • Abstract: found
          • Article: not found

          Proteomic characterization of the human centrosome by protein correlation profiling.

          The centrosome is the major microtubule-organizing centre of animal cells and through its influence on the cytoskeleton is involved in cell shape, polarity and motility. It also has a crucial function in cell division because it determines the poles of the mitotic spindle that segregates duplicated chromosomes between dividing cells. Despite the importance of this organelle to cell biology and more than 100 years of study, many aspects of its function remain enigmatic and its structure and composition are still largely unknown. We performed a mass-spectrometry-based proteomic analysis of human centrosomes in the interphase of the cell cycle by quantitatively profiling hundreds of proteins across several centrifugation fractions. True centrosomal proteins were revealed by both correlation with already known centrosomal proteins and in vivo localization. We identified and validated 23 novel components and identified 41 likely candidates as well as the vast majority of the known centrosomal proteins in a large background of nonspecific proteins. Protein correlation profiling permits the analysis of any multiprotein complex that can be enriched by fractionation but not purified to homogeneity.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            XMAP215 is a processive microtubule polymerase.

            Fast growth of microtubules is essential for rapid assembly of the microtubule cytoskeleton during cell proliferation and differentiation. XMAP215 belongs to a conserved family of proteins that promote microtubule growth. To determine how XMAP215 accelerates growth, we developed a single-molecule assay to visualize directly XMAP215-GFP interacting with dynamic microtubules. XMAP215 binds free tubulin in a 1:1 complex that interacts with the microtubule lattice and targets the ends by a diffusion-facilitated mechanism. XMAP215 persists at the plus end for many rounds of tubulin subunit addition in a form of "tip tracking." These results show that XMAP215 is a processive polymerase that directly catalyzes the addition of up to 25 tubulin dimers to the growing plus end. Under some circumstances XMAP215 can also catalyze the reverse reaction, namely microtubule shrinkage. The similarities between XMAP215 and formins, actin polymerases, suggest that processive tip tracking is a common mechanism for stimulating the growth of cytoskeletal polymers.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Branching microtubule nucleation in Xenopus egg extracts mediated by augmin and TPX2.

              The microtubules that comprise mitotic spindles in animal cells are nucleated at centrosomes and by spindle assembly factors that are activated in the vicinity of chromatin. Indirect evidence has suggested that microtubules also might be nucleated from pre-existing microtubules throughout the spindle, but this process has not been observed directly. Here, we demonstrate microtubule nucleation from the sides of existing microtubules in meiotic Xenopus egg extracts. Daughter microtubules grow at a low branch angle and with the same polarity as mother filaments. Branching microtubule nucleation requires γ-tubulin and augmin and is stimulated by factors previously implicated in chromatin-stimulated nucleation, guanosine triphosphate(GTP)-bound Ran and its effector, TPX2. Because of the rapid amplification of microtubule numbers and the preservation of microtubule polarity, microtubule-dependent microtubule nucleation is well suited for spindle assembly and maintenance. Copyright © 2013 Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Journal
                100890575
                21417
                Nat Cell Biol
                Nat. Cell Biol.
                Nature cell biology
                1465-7392
                1476-4679
                29 March 2018
                25 April 2018
                May 2018
                25 October 2018
                : 20
                : 5
                : 575-585
                Affiliations
                [2 ]Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544
                [3 ]Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544
                Author notes
                [* ]Correspondence should be addressed to: spetry@ 123456princeton.edu
                [1]

                These authors contributed equally to this work

                Article
                NIHMS953211
                10.1038/s41556-018-0091-6
                5926803
                29695792
                013ac8a1-4d01-46ed-90a4-e3ed743d4257

                Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms

                History
                Categories
                Article

                Cell biology
                Cell biology

                Comments

                Comment on this article