11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Classifying neovascular age-related macular degeneration with a deep convolutional neural network based on optical coherence tomography images

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Neovascular age-related macular degeneration (nAMD) is among the main causes of visual impairment worldwide. We built a deep learning model to distinguish the subtypes of nAMD using spectral domain optical coherence tomography (SD-OCT) images. Data from SD-OCT images of nAMD (polypoidal choroidal vasculopathy, retinal angiomatous proliferation, and typical nAMD) and normal healthy patients were analyzed using a convolutional neural network (CNN). The model was trained and validated based on 4749 SD-OCT images from 347 patients and 50 healthy controls. To adopt an accurate and robust image classification architecture, we evaluated three well-known CNN structures (VGG-16, VGG-19, and ResNet) and two customized classification layers (fully connected layer with dropout vs. global average pooling). Following the test set performance, the model with the highest classification accuracy was used. Transfer learning and data augmentation were applied to improve the robustness and accuracy of the model. Our proposed model showed an accuracy of 87.4% on the test data (920 images), scoring higher than ten ophthalmologists, for the same data. Additionally, the part that our model judged to be important in classification was confirmed through Grad-CAM images, and consequently, it has a similar judgment criteria to that of ophthalmologists. Thus, we believe that our model can be used as an auxiliary tool in clinical practice.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: not found
          • Article: not found

          ImageNet classification with deep convolutional neural networks

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found
            Is Open Access

            Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis.

            Numerous population-based studies of age-related macular degeneration have been reported around the world, with the results of some studies suggesting racial or ethnic differences in disease prevalence. Integrating these resources to provide summarised data to establish worldwide prevalence and to project the number of people with age-related macular degeneration from 2020 to 2040 would be a useful guide for global strategies. We did a systematic literature review to identify all population-based studies of age-related macular degeneration published before May, 2013. Only studies using retinal photographs and standardised grading classifications (the Wisconsin age-related maculopathy grading system, the international classification for age-related macular degeneration, or the Rotterdam staging system) were included. Hierarchical Bayesian approaches were used to estimate the pooled prevalence, the 95% credible intervals (CrI), and to examine the difference in prevalence by ethnicity (European, African, Hispanic, Asian) and region (Africa, Asia, Europe, Latin America and the Caribbean, North America, and Oceania). UN World Population Prospects were used to project the number of people affected in 2014 and 2040. Bayes factor was calculated as a measure of statistical evidence, with a score above three indicating substantial evidence. Analysis of 129,664 individuals (aged 30-97 years), with 12,727 cases from 39 studies, showed the pooled prevalence (mapped to an age range of 45-85 years) of early, late, and any age-related macular degeneration to be 8.01% (95% CrI 3.98-15.49), 0.37% (0.18-0.77), and 8.69% (4.26-17.40), respectively. We found a higher prevalence of early and any age-related macular degeneration in Europeans than in Asians (early: 11.2% vs 6.8%, Bayes factor 3.9; any: 12.3% vs 7.4%, Bayes factor 4.3), and early, late, and any age-related macular degeneration to be more prevalent in Europeans than in Africans (early: 11.2% vs 7.1%, Bayes factor 12.2; late: 0.5% vs 0.3%, 3.7; any: 12.3% vs 7.5%, 31.3). There was no difference in prevalence between Asians and Africans (all Bayes factors <1). Europeans had a higher prevalence of geographic atrophy subtype (1.11%, 95% CrI 0.53-2.08) than Africans (0.14%, 0.04-0.45), Asians (0.21%, 0.04-0.87), and Hispanics (0.16%, 0.05-0.46). Between geographical regions, cases of early and any age-related macular degeneration were less prevalent in Asia than in Europe and North America (early: 6.3% vs 14.3% and 12.8% [Bayes factor 2.3 and 7.6]; any: 6.9% vs 18.3% and 14.3% [3.0 and 3.8]). No significant gender effect was noted in prevalence (Bayes factor <1.0). The projected number of people with age-related macular degeneration in 2020 is 196 million (95% CrI 140-261), increasing to 288 million in 2040 (205-399). These estimates indicate the substantial global burden of age-related macular degeneration. Summarised data provide information for understanding the effect of the condition and provide data towards designing eye-care strategies and health services around the world. National Medical Research Council, Singapore. Copyright © 2014 Wong et al. Open Access article distributed under the terms of CC BY-NC-ND. Published by .. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Deep Convolutional Neural Networks for Computer-Aided Detection: CNN Architectures, Dataset Characteristics and Transfer Learning

              Remarkable progress has been made in image recognition, primarily due to the availability of large-scale annotated datasets and deep convolutional neural networks (CNNs). CNNs enable learning data-driven, highly representative, hierarchical image features from sufficient training data. However, obtaining datasets as comprehensively annotated as ImageNet in the medical imaging domain remains a challenge. There are currently three major techniques that successfully employ CNNs to medical image classification: training the CNN from scratch, using off-the-shelf pre-trained CNN features, and conducting unsupervised CNN pre-training with supervised fine-tuning. Another effective method is transfer learning, i.e., fine-tuning CNN models pre-trained from natural image dataset to medical image tasks. In this paper, we exploit three important, but previously understudied factors of employing deep convolutional neural networks to computer-aided detection problems. We first explore and evaluate different CNN architectures. The studied models contain 5 thousand to 160 million parameters, and vary in numbers of layers. We then evaluate the influence of dataset scale and spatial image context on performance. Finally, we examine when and why transfer learning from pre-trained ImageNet (via fine-tuning) can be useful. We study two specific computer-aided detection (CADe) problems, namely thoraco-abdominal lymph node (LN) detection and interstitial lung disease (ILD) classification. We achieve the state-of-the-art performance on the mediastinal LN detection, and report the first five-fold cross-validation classification results on predicting axial CT slices with ILD categories. Our extensive empirical evaluation, CNN model analysis and valuable insights can be extended to the design of high performance CAD systems for other medical imaging tasks.
                Bookmark

                Author and article information

                Contributors
                daniel.dj.hwang@gmail.com
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                9 February 2022
                9 February 2022
                2022
                : 12
                : 2232
                Affiliations
                [1 ]GRID grid.264381.a, ISNI 0000 0001 2181 989X, Department of Applied Artificial Intelligence, , Sungkyunkwan University, ; Seoul, Korea
                [2 ]RAON DATA, Seoul, Korea
                [3 ]GRID grid.412010.6, ISNI 0000 0001 0707 9039, Department of Medicine, Kangwon National University Hospital, , Kangwon National University School of Medicine, ; Chuncheon, Gangwon-do South Korea
                [4 ]Seoul Plus Eye Clinic, Seoul, Korea
                [5 ]Kong Eye Center, Seoul, Korea
                [6 ]Department of Ophthalmology, Hangil Eye Hospital, 35 Bupyeong-daero, Bupyeong-gu, Incheon, 21388 Korea
                [7 ]Lux Mind, Incheon, Korea
                [8 ]Department of Ophthalmology, Catholic Kwandong University College of Medicine, Incheon, Korea
                Article
                5903
                10.1038/s41598-022-05903-7
                8828755
                35140257
                0131823b-8cc8-442f-80d4-e661396bdeb0
                © The Author(s) 2022

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 3 September 2021
                : 17 January 2022
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/501100003725, National Research Foundation of Korea;
                Award ID: NRF-2020K2A9A2A11103842
                Award Recipient :
                Categories
                Article
                Custom metadata
                © The Author(s) 2022

                Uncategorized
                retinal diseases,medical imaging,machine learning
                Uncategorized
                retinal diseases, medical imaging, machine learning

                Comments

                Comment on this article