29
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Classification of adhesive domains in the Plasmodium falciparum Erythrocyte Membrane Protein 1 family

      , , , ,
      Molecular and Biochemical Parasitology
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The Plasmodium falciparum Erythrocyte Membrane Protein 1 (PfEMP1) family of cytoadherent proteins has a central role in disease from malaria infection. This highly diverse gene family is involved in binding interactions between infected erythrocytes and host cells and is expressed in a clonally variant pattern at the erythrocyte surface. We describe by sequence analysis the structure and domain organization of 20 PfEMP1 from the GenBank database. Four domains comprise the majority of PfEMP1 extracellular sequence: the N-terminal segment (NTS) located at the amino terminus of all PfEMP1, the C2, the Cysteine-rich Interdomain Region (CIDR) and the Duffy Binding-like (DBL) domains. Previous work has shown that CIDR and DBL domains can possess adhesive properties. CIDR domains grouped as three distinct sequence classes (alpha, beta, and gamma) and DBL domains as five sequence classes (alpha, beta, gamma, delta, and epsilon). Consensus motifs are described for the different DBL and CIDR types. Whereas the number of DBL and CIDR domains vary between PfEMP1, PfEMP1 domain architecture is not random in that certain tandem domain associations--such as DBLalphaCIDRalpha, DBLdeltaCIDRbeta, and DBLbetaC2--are preferentially observed. This conservation may have functional significance for PfEMP1 folding, transport, or binding activity. Parasite binding phenotype appears to be a determinant of infected erythrocyte tissue tropism that contributes to parasite survival, transmission, and disease outcome. The sequence classification of DBL and CIDR types may have predictive value for identifying PfEMP1 domains with a particular binding property. This information might be used to develop interventions targeting parasite binding variants that cause disease.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: not found

          Adherence of Plasmodium falciparum to chondroitin sulfate A in the human placenta.

          Women are particularly susceptible to malaria during first and second pregnancies, even though they may have developed immunity over years of residence in endemic areas. Plasmodium falciparum-infected red blood cells (IRBCs) were obtained from human placentas. These IRBCs bound to purified chondroitin sulfate A (CSA) but not to other extracellular matrix proteins or to other known IRBC receptors. IRBCs from nonpregnant donors did not bind to CSA. Placental IRBCs adhered to sections of fresh-frozen human placenta with an anatomic distribution similar to that of naturally infected placentas, and this adhesion was competitively inhibited by purified CSA. Thus, adhesion to CSA appears to select for a subpopulation of parasites that causes maternal malaria.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cloning the P. falciparum gene encoding PfEMP1, a malarial variant antigen and adherence receptor on the surface of parasitized human erythrocytes.

            Plasmodium falciparum-infected human erythrocytes evade host immunity by expression of a cell-surface variant antigen and receptors for adherence to endothelial cells. These properties have been ascribed to P. falciparum erythrocyte membrane protein 1 (PfEMP1), an antigenically diverse malarial protein of 200-350 kDa on the surface of parasitized erythrocytes (PEs). We describe the cloning of two related PfEMP1 genes from the Malayan Camp (MC) parasite strain. Antibodies generated against recombinant protein fragments of the genes were specific for MC strain PfEMP1 protein. These antibodies reacted only with the surface of MC strain PEs and blocked adherence of these cells to CD36 but without effect on adherence to thrombospondin. Multiple forms of the PfEMP1 gene are apparent in MC parasites. The molecular basis for antigenic variation in malaria and adherence of infected erythrocytes to host cells can now be pursued.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Parasite antigens on the infected red cell surface are targets for naturally acquired immunity to malaria.

              The feasibility of a malaria vaccine is supported by the fact that children in endemic areas develop naturally acquired immunity to disease. Development of disease immunity is characterized by a decrease in the frequency and severity of disease episodes over several years despite almost continuous infection, suggesting that immunity may develop through the acquisition of a repertoire of specific, protective antibodies directed against polymorphic target antigens. Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) is a potentially important family of target antigens, because these proteins are inserted into the red cell surface and are prominently exposed and because they are highly polymorphic and undergo clonal antigenic variation, a mechanism of immune evasion maintained by a large family of var genes. In a large prospective study of Kenyan children, we have used the fact that anti-PfEMP1 antibodies agglutinate infected erythrocytes in a variant-specific manner, to show that the PfEMP1 variants expressed during episodes of clinical malaria were less likely to be recognized by the corresponding child's own preexisting antibody response than by that of children of the same age from the same community. In contrast, a heterologous parasite isolate was just as likely to be recognized. The apparent selective pressure exerted by established anti-PfEMP1 antibodies on infecting parasites supports the idea that such responses provide variant-specific protection against disease.
                Bookmark

                Author and article information

                Journal
                Molecular and Biochemical Parasitology
                Molecular and Biochemical Parasitology
                Elsevier BV
                01666851
                October 2000
                October 2000
                : 110
                : 2
                : 293-310
                Article
                10.1016/S0166-6851(00)00279-6
                11071284
                010bc864-2daf-4fae-b9b2-4b8cd353a92e
                © 2000

                https://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article