426
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      DNA sequencing of a cytogenetically normal acute myeloid leukemia genome

      research-article
      1 , 2 , 3 , 4 , 2 , 3 , 2 , 3 , 3 , 3 , 3 , 3 , 3 , 3 , 3 , 3 , 3 , 3 , 3 , 3 , 3 , 3 , 3 , 3 , 5 , 3 , 3 , 2 , 3 , 3 , 3 , 3 , 3 , 3 , 3 , 3 , 5 , 3 , 1 , 1 , 6 , 1 , 4 , 1 , 4 , 3 , 4 , 6 , 7 , 4 , 8 , 1 , 4 , 1 , 4 , 4 , 6 , 1 , 4 , 1 , 4 , 1 , 4 , 1 , 4 , 2 , 3 , 4
      Nature

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Lay Summary

          Acute myeloid leukemia is a highly malignant hematopoietic tumor that affects about 13,000 adults yearly in the United States. The treatment of this disease has changed little in the past two decades, since most of the genetic events that initiate the disease remain undiscovered. Whole genome sequencing is now possible at a reasonable cost and timeframe to utilize this approach for unbiased discovery of tumor-specific somatic mutations that alter the protein-coding genes. Here we show the results obtained by sequencing a typical acute myeloid leukemia genome and its matched normal counterpart, obtained from the patient’s skin. We discovered 10 genes with acquired mutations; two were previously described mutations thought to contribute to tumor progression, and 8 were novel mutations present in virtually all tumor cells at presentation and relapse, whose function is not yet known. Our study establishes whole genome sequencing as an unbiased method for discovering initiating mutations in cancer genomes, and for identifying novel genes that may respond to targeted therapies.

          We used massively parallel sequencing technology to sequence the genomic DNA of tumor and normal skin cells obtained from a patient with a typical presentation of FAB M1 Acute Myeloid Leukemia (AML) with normal cytogenetics. 32.7-fold ‘haploid’ coverage (98 billion bases) was obtained for the tumor genome, and 13.9-fold coverage (41.8 billion bases) was obtained for the normal sample. Of 2,647,695 well-supported Single Nucleotide Variants (SNVs) found in the tumor genome, 2,588,486 (97.7%) also were detected in the patient’s skin genome, limiting the number of variants that required further study. For the purposes of this initial study, we restricted our downstream analysis to the coding sequences of annotated genes: we found only eight heterozygous, non-synonymous somatic SNVs in the entire genome. All were novel, including mutations in protocadherin/cadherin family members (CDH24 and PCLKC), G-protein coupled receptors (GPR123 and EBI2), a protein phosphatase (PTPRT), a potential guanine nucleotide exchange factor (KNDC1), a peptide/drug transporter (SLC15A1), and a glutamate receptor gene (GRINL1B). We also detected previously described, recurrent somatic insertions in the FLT3 and NPM1 genes. Based on deep readcount data, we determined that all of these mutations (except FLT3) were present in nearly all tumor cells at presentation, and again at relapse 11 months later, suggesting that the patient had a single dominant clone containing all of the mutations. These results demonstrate the power of whole genome sequencing to discover novel cancer-associated mutations.

          Related collections

          Most cited references23

          • Record: found
          • Abstract: found
          • Article: not found
          Is Open Access

          The complete genome of an individual by massively parallel DNA sequencing.

          The association of genetic variation with disease and drug response, and improvements in nucleic acid technologies, have given great optimism for the impact of 'genomic medicine'. However, the formidable size of the diploid human genome, approximately 6 gigabases, has prevented the routine application of sequencing methods to deciphering complete individual human genomes. To realize the full potential of genomics for human health, this limitation must be overcome. Here we report the DNA sequence of a diploid genome of a single individual, James D. Watson, sequenced to 7.4-fold redundancy in two months using massively parallel sequencing in picolitre-size reaction vessels. This sequence was completed in two months at approximately one-hundredth of the cost of traditional capillary electrophoresis methods. Comparison of the sequence to the reference genome led to the identification of 3.3 million single nucleotide polymorphisms, of which 10,654 cause amino-acid substitution within the coding sequence. In addition, we accurately identified small-scale (2-40,000 base pair (bp)) insertion and deletion polymorphism as well as copy number variation resulting in the large-scale gain and loss of chromosomal segments ranging from 26,000 to 1.5 million base pairs. Overall, these results agree well with recent results of sequencing of a single individual by traditional methods. However, in addition to being faster and significantly less expensive, this sequencing technology avoids the arbitrary loss of genomic sequences inherent in random shotgun sequencing by bacterial cloning because it amplifies DNA in a cell-free system. As a result, we further demonstrate the acquisition of novel human sequence, including novel genes not previously identified by traditional genomic sequencing. This is the first genome sequenced by next-generation technologies. Therefore it is a pilot for the future challenges of 'personalized genome sequencing'.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cytoplasmic nucleophosmin in acute myelogenous leukemia with a normal karyotype.

            Nucleophosmin (NPM), a nucleocytoplasmic shuttling protein with prominent nucleolar localization, regulates the ARF-p53 tumor-suppressor pathway. Translocations involving the NPM gene cause cytoplasmic dislocation of the NPM protein. We used immunohistochemical methods to study the subcellular localization of NPM in bone marrow-biopsy specimens from 591 patients with primary acute myelogenous leukemia (AML). We then correlated the presence of cytoplasmic NPM with clinical and biologic features of the disease. Cytoplasmic NPM was detected in 208 (35.2 percent) of the 591 specimens from patients with primary AML but not in 135 secondary AML specimens or in 980 hematopoietic or extrahematopoietic neoplasms other than AML. It was associated with a wide spectrum of morphologic subtypes of the disease, a normal karyotype, and responsiveness to induction chemotherapy, but not with recurrent genetic abnormalities. There was a high frequency of FLT3 internal tandem duplications and absence of CD34 and CD133 in AML specimens with a normal karyotype and cytoplasmic dislocation of NPM, but not in those in which the protein was restricted to the nucleus. AML specimens with cytoplasmic NPM carried mutations of the NPM gene that were predicted to alter the protein at its C-terminal; this mutant gene caused cytoplasmic localization of NPM in transfected cells. Cytoplasmic NPM is a characteristic feature of a large subgroup of patients with AML who have a normal karyotype, NPM gene mutations, and responsiveness to induction chemotherapy. Copyright 2005 Massachusetts Medical Society.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Prognostically useful gene-expression profiles in acute myeloid leukemia.

              In patients with acute myeloid leukemia (AML) a combination of methods must be used to classify the disease, make therapeutic decisions, and determine the prognosis. However, this combined approach provides correct therapeutic and prognostic information in only 50 percent of cases. We determined the gene-expression profiles in samples of peripheral blood or bone marrow from 285 patients with AML using Affymetrix U133A GeneChips containing approximately 13,000 unique genes or expression-signature tags. Data analyses were carried out with Omniviz, significance analysis of microarrays, and prediction analysis of microarrays software. Statistical analyses were performed to determine the prognostic significance of cases of AML with specific molecular signatures. Unsupervised cluster analyses identified 16 groups of patients with AML on the basis of molecular signatures. We identified the genes that defined these clusters and determined the minimal numbers of genes needed to identify prognostically important clusters with a high degree of accuracy. The clustering was driven by the presence of chromosomal lesions (e.g., t(8;21), t(15;17), and inv(16)), particular genetic mutations (CEBPA), and abnormal oncogene expression (EVI1). We identified several novel clusters, some consisting of specimens with normal karyotypes. A unique cluster with a distinctive gene-expression signature included cases of AML with a poor treatment outcome. Gene-expression profiling allows a comprehensive classification of AML that includes previously identified genetically defined subgroups and a novel cluster with an adverse prognosis. Copyright 2004 Massachusetts Medical Society
                Bookmark

                Author and article information

                Journal
                0410462
                6011
                Nature
                Nature
                0028-0836
                1476-4687
                14 October 2008
                6 November 2008
                6 May 2009
                : 456
                : 7218
                : 66-72
                Affiliations
                [1 ] Department of Medicine, Washington University School of Medicine, Washington University School of Medicine, St. Louis, MO
                [2 ] Department of Genetics, Washington University School of Medicine, Washington University School of Medicine, St. Louis, MO
                [3 ] The Genome Center at Washington University, Washington University School of Medicine, St. Louis, MO
                [4 ] Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO
                [5 ] Department of Genome Sciences, University of Washington, Seattle WA
                [6 ] Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
                [7 ] Division of Biostatistics, Washington University School of Medicine, St. Louis, MO
                [8 ] Department of Surgery, Washington University School of Medicine, St. Louis, MO
                Author notes
                Correspondence should be addressed to E.R.M. ( emardis@ 123456wustl.edu )
                [*]

                These authors contributed equally to this work.

                Article
                nihpa71093
                10.1038/nature07485
                2603574
                18987736
                00fb8b8a-55a5-4b39-bf69-19c8fca67fe7
                History
                Funding
                Funded by: National Human Genome Research Institute : NHGRI
                Award ID: U54 HG002042-05 ||HG
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article