1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Salmonella Strain Specificity Determines Post-typhoid Central Nervous System Complications: Intervention by Lactiplantibacillus plantarum at Gut-Brain Axis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Neurological complications occurring due to Salmonella infection in some typhoid patients remain a relatively unexplored serious complication. This study firstly aimed to explore whether disseminative ability of Salmonella from gut to brain is strain specific or not and on the basis of bacterial load, histopathology, and behavioral changes, it was observed that Salmonella enterica serovar Typhimurium NCTC 74 did not cause brain infection in murine model in contrast to Salmonella Typhimurium SL1344. Simultaneously, alarming escalation in antimicrobial resistance, making the existing antibiotics treatment inefficacious, prompted us to evaluate other bio-compatible strategies as a potential treatment option. In this context, the role of gut microbiota in influencing behavior, brain neurochemistry, and physiology by modulating key molecules associated with gut-brain axis has captured the interest of the scientific community. Followed by in vitro screening of potential probiotic strains for beneficial attributes, efficacy of the selected strain was systematically evaluated at various levels of gut-brain axis against Salmonella induced brain infection. Analysis of behavioral (depression, anxiety, and locomotor), neurochemical [gamma amino butyric acid and acetylcholinesterase (AChE)], neuropathological (brain and intestinal histology; bacterial burden), and immunohistochemical studies (tight junction proteins expression) revealed its role in preventing serious manifestations and proving its potential as “psychobiotic.” To the best of our knowledge, this is the first report elaborating strain specificity of Salmonella in causing post-typhoidal neurological manifestations and simultaneous use of probiotic in managing the same by influencing the pathophysiology at gut-brain axis.

          Related collections

          Most cited references59

          • Record: found
          • Abstract: found
          • Article: not found

          Commensal host-bacterial relationships in the gut.

          One potential outcome of the adaptive coevolution of humans and bacteria is the development of commensal relationships, where neither partner is harmed, or symbiotic relationships, where unique metabolic traits or other benefits are provided. Our gastrointestinal tract is colonized by a vast community of symbionts and commensals that have important effects on immune function, nutrient processing, and a broad range of other host activities. The current genomic revolution offers an unprecedented opportunity to identify the molecular foundations of these relationships so that we can understand how they contribute to our normal physiology and how they can be exploited to develop new therapeutic strategies.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Effects of the probiotic Bifidobacterium infantis in the maternal separation model of depression.

            The concept that intestinal microbial composition not only affects the health of the gut, but also influences centrally-mediated systems involved in mood, is supported by a growing body of literature. Despite the emergent interest in brain-gut communication and its possible role in the pathogenesis of psychiatric disorders such as depression, particularly subtypes with accompanying gastrointestinal (GI) symptoms, there are few studies dedicated to the search for therapeutic solutions that address both central and peripheral facets of these illnesses. This study aims to assess the potential benefits of the probiotic Bifidobacterium infantis in the rat maternal separation (MS) model, a paradigm that has proven to be of value in the study of stress-related GI and mood disorders. MS adult rat offsprings were chronically treated with bifidobacteria or citalopram and subjected to the forced swim test (FST) to assess motivational state. Cytokine concentrations in stimulated whole blood samples, monoamine levels in the brain, and central and peripheral hypothalamic-pituitary-adrenal (HPA) axis measures were also analysed. MS reduced swim behavior and increased immobility in the FST, decreased noradrenaline (NA) content in the brain, and enhanced peripheral interleukin (IL)-6 release and amygdala corticotrophin-releasing factor mRNA levels. Probiotic treatment resulted in normalization of the immune response, reversal of behavioral deficits, and restoration of basal NA concentrations in the brainstem. These findings point to a more influential role for bifidobacteria in neural function, and suggest that probiotics may have broader therapeutic applications than previously considered. Copyright © 2010 IBRO. Published by Elsevier Ltd. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The GABA system in anxiety and depression and its therapeutic potential.

              In the regulation of behavior, the role of GABA neurons has been extensively studied in the circuit of fear, where GABA interneurons play key parts in the acquisition, storage and extinction of fear. Therapeutically, modulators of α(2)/α(3) GABA(A) receptors, such as TPA023, have shown clinical proof of concept as novel anxiolytics, which are superior to classical benzodiazepines by their lack of sedation and much reduced or absent dependence liability. In view of the finding that anxiety disorders and major depression share a GABAergic deficit as a common pathophysiology, the GABA hypothesis of depression has found increasing support. It holds that α(2)/α(3) GABA(A) receptor modulators may serve as novel antidepressants. Initial clinical evidence for this view comes from the significantly enhanced antidepressant therapeutic response when eszopicole, an anxiolytic/hypnotic acting preferentially on α(2)/α(3) and α(1) GABA(A) receptors, was coadministered with an antidepressant. This effect persisted even when sleep items were not considered. These initial results warrant efforts to profile selective α(2)/α(3) GABA(A) receptor modulators, such as TPA023, as novel antidepressants. In addition, GABA(B) receptor antagonists may serve as potential antidepressants. This article is part of a Special Issue entitled 'Anxiety and Depression'. Copyright © 2011 Elsevier Ltd. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Microbiol
                Front Microbiol
                Front. Microbiol.
                Frontiers in Microbiology
                Frontiers Media S.A.
                1664-302X
                24 July 2020
                2020
                24 July 2020
                : 11
                : 1568
                Affiliations
                [1] 1Department of Microbiology, Panjab University , Chandigarh, India
                [2] 2University Institute of Pharmaceutical Sciences, Panjab University , Chandigarh, India
                Author notes

                Edited by: Luisa I. Falcon, National Autonomous University of Mexico, Mexico

                Reviewed by: Sávio Henrique Sandes, Federal University of Juiz de Fora, Brazil; Rosana Barreto Rocha Ferreira, Federal University of Rio de Janeiro, Brazil

                This article was submitted to Microbial Symbioses, a section of the journal Frontiers in Microbiology

                Article
                10.3389/fmicb.2020.01568
                7393228
                00fa2e93-93a8-4ace-98ad-dc9ccae68a12
                Copyright © 2020 Kaur, Chopra, Kaur and Rishi.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 15 April 2020
                : 16 June 2020
                Page count
                Figures: 9, Tables: 1, Equations: 1, References: 78, Pages: 17, Words: 12136
                Funding
                Funded by: Department of Science and Technology
                Funded by: University Grants Commission-Basic Scientific Research
                Award ID: F.25-1/2014-15(BSR)/7-261/2009
                Categories
                Microbiology
                Original Research

                Microbiology & Virology
                gut-brain axis,lactiplantibacillus plantarum,neurological complications,probiotic,salmonella

                Comments

                Comment on this article