23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Microalgae for high-value products: A way towards green nutraceutical and pharmaceutical compounds

      , , ,
      Chemosphere
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references204

          • Record: found
          • Abstract: found
          • Article: not found

          Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor.

          Thirty microalgal strains were screened in the laboratory for their biomass productivity and lipid content. Four strains (two marine and two freshwater), selected because robust, highly productive and with a relatively high lipid content, were cultivated under nitrogen deprivation in 0.6-L bubbled tubes. Only the two marine microalgae accumulated lipid under such conditions. One of them, the eustigmatophyte Nannochloropsis sp. F&M-M24, which attained 60% lipid content after nitrogen starvation, was grown in a 20-L Flat Alveolar Panel photobioreactor to study the influence of irradiance and nutrient (nitrogen or phosphorus) deprivation on fatty acid accumulation. Fatty acid content increased with high irradiances (up to 32.5% of dry biomass) and following both nitrogen and phosphorus deprivation (up to about 50%). To evaluate its lipid production potential under natural sunlight, the strain was grown outdoors in 110-L Green Wall Panel photobioreactors under nutrient sufficient and deficient conditions. Lipid productivity increased from 117 mg/L/day in nutrient sufficient media (with an average biomass productivity of 0.36 g/L/day and 32% lipid content) to 204 mg/L/day (with an average biomass productivity of 0.30 g/L/day and more than 60% final lipid content) in nitrogen deprived media. In a two-phase cultivation process (a nutrient sufficient phase to produce the inoculum followed by a nitrogen deprived phase to boost lipid synthesis) the oil production potential could be projected to be more than 90 kg per hectare per day. This is the first report of an increase of both lipid content and areal lipid productivity attained through nutrient deprivation in an outdoor algal culture. The experiments showed that this marine eustigmatophyte has the potential for an annual production of 20 tons of lipid per hectare in the Mediterranean climate and of more than 30 tons of lipid per hectare in sunny tropical areas.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Commercial applications of microalgae.

            The first use of microalgae by humans dates back 2000 years to the Chinese, who used Nostoc to survive during famine. However, microalgal biotechnology only really began to develop in the middle of the last century. Nowadays, there are numerous commercial applications of microalgae. For example, (i) microalgae can be used to enhance the nutritional value of food and animal feed owing to their chemical composition, (ii) they play a crucial role in aquaculture and (iii) they can be incorporated into cosmetics. Moreover, they are cultivated as a source of highly valuable molecules. For example, polyunsaturated fatty acid oils are added to infant formulas and nutritional supplements and pigments are important as natural dyes. Stable isotope biochemicals help in structural determination and metabolic studies. Future research should focus on the improvement of production systems and the genetic modification of strains. Microalgal products would in that way become even more diversified and economically competitive.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Second Generation Biofuels: High-Efficiency Microalgae for Biodiesel Production

                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                Chemosphere
                Chemosphere
                Elsevier BV
                00456535
                October 2021
                October 2021
                : 280
                : 130553
                Article
                10.1016/j.chemosphere.2021.130553
                33940454
                00f397f2-f142-4da8-bb18-73dda1fab1dd
                © 2021

                https://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article