41
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A Comprehensive Study of Galaxies at z ∼ 9–16 Found in the Early JWST Data: Ultraviolet Luminosity Functions and Cosmic Star Formation History at the Pre-reionization Epoch

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We conduct a comprehensive study on dropout galaxy candidates at z ∼ 9–16 using the first 90 arcmin 2 James Webb Space Telescope (JWST) Near Infrared Camera images taken by the early release observations (ERO) and early release science programs. With the JWST simulation images, we find that a number of foreground interlopers are selected with a weak photo- z determination (Δ χ 2 > 4). We thus carefully apply a secure photo -z selection criterion (Δ χ 2 > 9) and conventional color criteria with confirmations of the ERO Near Infrared Spectrograph spectroscopic redshifts, and obtain a total of 23 dropout galaxies at z ∼ 9–16, including two candidates at z phot = 16.25 0.46 + 0.24 and 16.41 0.55 + 0.66 . We perform thorough comparisons of dropout galaxies found in our work with recent JWST studies, and conclude that our galaxy sample is reliable enough for statistical analyses. We derive the UV luminosity functions at z ∼ 9–16, and confirm that our UV luminosity functions at z ∼ 9 and 12 agree with those determined by other Hubble Space Telescope and JWST studies. The cosmic star formation rate (SFR) density decreases from z ∼ 9 to 12, and perhaps to 16, but the densities at z ∼ 12–16 are higher than the constant star formation efficiency model. Interestingly, there are six bright galaxy candidates at z ∼ 10–16 with M UV < −19.5 mag and M * ∼ 10 8−9 M . Because a majority (∼80%) of these galaxies show no signatures of active galactic nuclei in their morphologies, the high cosmic SFR densities and the existence of these UV-luminous galaxies are explained by the lack of suppression of star formation by the UV background radiation at the pre-reionization epoch and/or an efficient UV radiation production by a top-heavy initial mass function with Population III–like star formation.

          Related collections

          Most cited references163

          • Record: found
          • Abstract: not found
          • Article: not found

          emcee: The MCMC Hammer

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Planck 2018 results: VI. Cosmological parameters

            We present cosmological parameter results from the final full-mission Planck measurements of the cosmic microwave background (CMB) anisotropies, combining information from the temperature and polarization maps and the lensing reconstruction. Compared to the 2015 results, improved measurements of large-scale polarization allow the reionization optical depth to be measured with higher precision, leading to significant gains in the precision of other correlated parameters. Improved modelling of the small-scale polarization leads to more robust constraints on many parameters, with residual modelling uncertainties estimated to affect them only at the 0.5 σ level. We find good consistency with the standard spatially-flat 6-parameter ΛCDM cosmology having a power-law spectrum of adiabatic scalar perturbations (denoted “base ΛCDM” in this paper), from polarization, temperature, and lensing, separately and in combination. A combined analysis gives dark matter density Ω c h 2 = 0.120 ± 0.001, baryon density Ω b h 2 = 0.0224 ± 0.0001, scalar spectral index n s = 0.965 ± 0.004, and optical depth τ = 0.054 ± 0.007 (in this abstract we quote 68% confidence regions on measured parameters and 95% on upper limits). The angular acoustic scale is measured to 0.03% precision, with 100 θ * = 1.0411 ± 0.0003. These results are only weakly dependent on the cosmological model and remain stable, with somewhat increased errors, in many commonly considered extensions. Assuming the base-ΛCDM cosmology, the inferred (model-dependent) late-Universe parameters are: Hubble constant H 0 = (67.4 ± 0.5) km s −1 Mpc −1 ; matter density parameter Ω m = 0.315 ± 0.007; and matter fluctuation amplitude σ 8 = 0.811 ± 0.006. We find no compelling evidence for extensions to the base-ΛCDM model. Combining with baryon acoustic oscillation (BAO) measurements (and considering single-parameter extensions) we constrain the effective extra relativistic degrees of freedom to be N eff = 2.99 ± 0.17, in agreement with the Standard Model prediction N eff = 3.046, and find that the neutrino mass is tightly constrained to ∑ m ν < 0.12 eV. The CMB spectra continue to prefer higher lensing amplitudes than predicted in base ΛCDM at over 2 σ , which pulls some parameters that affect the lensing amplitude away from the ΛCDM model; however, this is not supported by the lensing reconstruction or (in models that also change the background geometry) BAO data. The joint constraint with BAO measurements on spatial curvature is consistent with a flat universe, Ω K = 0.001 ± 0.002. Also combining with Type Ia supernovae (SNe), the dark-energy equation of state parameter is measured to be w 0 = −1.03 ± 0.03, consistent with a cosmological constant. We find no evidence for deviations from a purely power-law primordial spectrum, and combining with data from BAO, BICEP2, and Keck Array data, we place a limit on the tensor-to-scalar ratio r 0.002 < 0.06. Standard big-bang nucleosynthesis predictions for the helium and deuterium abundances for the base-ΛCDM cosmology are in excellent agreement with observations. The Planck base-ΛCDM results are in good agreement with BAO, SNe, and some galaxy lensing observations, but in slight tension with the Dark Energy Survey’s combined-probe results including galaxy clustering (which prefers lower fluctuation amplitudes or matter density parameters), and in significant, 3.6 σ , tension with local measurements of the Hubble constant (which prefer a higher value). Simple model extensions that can partially resolve these tensions are not favoured by the Planck data.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Galactic Stellar and Substellar Initial Mass Function

                Bookmark

                Author and article information

                Contributors
                Journal
                The Astrophysical Journal Supplement Series
                ApJS
                American Astronomical Society
                0067-0049
                1538-4365
                February 15 2023
                March 01 2023
                February 15 2023
                March 01 2023
                : 265
                : 1
                : 5
                Article
                10.3847/1538-4365/acaaa9
                00e57e48-d6e3-4883-adb9-9b59da9852ba
                © 2023

                http://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article