38
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Radiation oncology: a century of achievements.

      Nature reviews. Cancer
      Dose Fractionation, Health Physics, history, History, 19th Century, History, 20th Century, Humans, Neoplasms, radiotherapy, Radiation Oncology, trends, Radiobiology

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Over the twentieth century the discipline of radiation oncology has developed from an experimental application of X-rays to a highly sophisticated treatment of cancer. Experts from many disciplines - chiefly clinicians, physicists and biologists - have contributed to these advances. Whereas the emphasis in the past was on refining techniques to ensure the accurate delivery of radiation, the future of radiation oncology lies in exploiting the genetics or the microenvironment of the tumour to turn cancer from an acute disease to a chronic disease that can be treated effectively with radiation.

          Related collections

          Most cited references55

          • Record: found
          • Abstract: found
          • Article: not found

          Tumor response to radiotherapy regulated by endothelial cell apoptosis.

          About 50% of cancer patients receive radiation therapy. Here we investigated the hypothesis that tumor response to radiation is determined not only by tumor cell phenotype but also by microvascular sensitivity. MCA/129 fibrosarcomas and B16F1 melanomas grown in apoptosis-resistant acid sphingomyelinase (asmase)-deficient or Bax-deficient mice displayed markedly reduced baseline microvascular endothelial apoptosis and grew 200 to 400% faster than tumors on wild-type microvasculature. Thus, endothelial apoptosis is a homeostatic factor regulating angiogenesis-dependent tumor growth. Moreover, these tumors exhibited reduced endothelial apoptosis upon irradiation and, unlike tumors in wild-type mice, they were resistant to single-dose radiation up to 20 grays (Gy). These studies indicate that microvascular damage regulates tumor cell response to radiation at the clinically relevant dose range.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            p53-dependent apoptosis modulates the cytotoxicity of anticancer agents.

            Although the primary cellular targets of many anticancer agents have been identified, less is known about the processes leading to the selective cell death of cancer cells or the molecular basis of drug resistance. p53-deficient mouse embryonic fibroblasts were used to examine systematically the requirement for p53 in cellular sensitivity and resistance to a diverse group of anticancer agents. These results demonstrate that an oncogene, specifically the adenovirus E1A gene, can sensitize fibroblasts to apoptosis induced by ionizing radiation, 5-fluorouracil, etoposide, and adriamycin. Furthermore, the p53 tumor suppressor is required for efficient execution of the death program. These data reinforce the notion that the cytotoxic action of many anticancer agents involves processes subsequent to the interaction between drug and cellular target and indicate that divergent stimuli can activate a common cell death program. Consequently, the involvement of p53 in the apoptotic response suggests a mechanism whereby tumor cells can acquire cross-resistance to anticancer agents.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              ACTION OF X-RAYS ON MAMMALIAN CELLS

              The effects of x-irradiation have been quantitatively studied on single cells of a human cervical carcinoma (HeLa) under conditions such that 100 per cent of the unirradiated cells reproduce in isolation to form macroscopic colonies. This technique eliminates complexities due to interactions of members of large cell populations. Survival of single cells (defined as the ability to form a macroscopic colony within 15 days) yields a typical 2 hit curve when plotted against x-ray dose. The initial shoulder extends to about 75 r, after which a linear logarithmic survival rate is obtained, in which the dose needed to reduce survivors to 37 per cent is 96 r. This radiation sensitivity is tens to hundreds of times greater than that of any microorganism for which the equivalent function bas been studied. Evidence, though not proof, is presented that the lethal effect is due to a radiation-induced genetic defect which, however, cannot be a simple single gene inactivation. The locus of the action could be chromosomal. Beginning at doses of 100 r, or possibly earlier, growth-delaying effects of radiation are visible. Cells in which the ability to reproduce has been destroyed by doses below 800 r, can still multiply several times. At higher doses even a single cell division is precluded. A large proportion of the cells killed by radiation at any dose gives rise to one or more giant cells. These metabolize actively, grow to huge proportions but never reproduce under the experimental conditions employed. Methods of preparing large populations of giant cells are described. These giants are particularly susceptible to virus action. Some of the irradiated cells disappear from the plate, presumably by disintegration. This action of radiation is by far the least efficient, since even after 10,000 r, 5 to 10 per cent of the original cell inoculum is recoverable as giants.
                Bookmark

                Author and article information

                Comments

                Comment on this article