36
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Intestinal CD103 +CD11b dendritic cells restrain colitis via IFN-γ-induced anti-inflammatory response in epithelial cells

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A crosstalk between commensals, gut immune cells, and colonic epithelia is required for a proper function of intestinal mucosal barrier. Here we investigated the importance of two distinct intestinal dendritic cell (DC) subsets in controlling intestinal inflammation. We show that Clec9A–diphtheria toxin receptor (DTR) mice after depletion of CD103 +CD11b DCs developed severe, low-dose dextran sodium sulfate (DSS)-induced colitis, whereas the lack of CD103 +CD11b + DCs in Clec4a4-DTR mice did not exacerbate intestinal inflammation. The CD103 +CD11b DC subset has gained a functional specialization that able them to repress inflammation via several epithelial interferon-γ (IFN-γ)-induced proteins. Among others, we identified that epithelial IDO1 and interleukin-18-binding protein (IL-18bp) were strongly modulated by CD103 +CD11b DCs. Through its preferential property to express IL-12 and IL-15, this particular DC subset can induce lymphocytes in colonic lamina propria and in epithelia to secrete IFN-γ that then can trigger a reversible early anti-inflammatory response in intestinal epithelial cells.

          Related collections

          Most cited references54

          • Record: found
          • Abstract: found
          • Article: not found

          Paneth cells, antimicrobial peptides and maintenance of intestinal homeostasis.

          Building and maintaining a homeostatic relationship between a host and its colonizing microbiota entails ongoing complex interactions between the host and the microorganisms. The mucosal immune system, including epithelial cells, plays an essential part in negotiating this equilibrium. Paneth cells (specialized cells in the epithelium of the small intestine) are an important source of antimicrobial peptides in the intestine. These cells have become the focus of investigations that explore the mechanisms of host-microorganism homeostasis in the small intestine and its collapse in the processes of infection and chronic inflammation. In this Review, we provide an overview of the intestinal microbiota and describe the cell biology of Paneth cells, emphasizing the composition of their secretions and the roles of these cells in intestinal host defence and homeostasis. We also highlight the implications of Paneth cell dysfunction in susceptibility to chronic inflammatory bowel disease.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Differential antigen processing by dendritic cell subsets in vivo.

            Dendritic cells (DCs) process and present self and foreign antigens to induce tolerance or immunity. In vitro models suggest that induction of immunity is controlled by regulating the presentation of antigen, but little is known about how DCs control antigen presentation in vivo. To examine antigen processing and presentation in vivo, we specifically targeted antigens to two major subsets of DCs by using chimeric monoclonal antibodies. Unlike CD8+ DCs that express the cell surface protein CD205, CD8- DCs, which are positive for the 33D1 antigen, are specialized for presentation on major histocompatibility complex (MHC) class II. This difference in antigen processing is intrinsic to the DC subsets and is associated with increased expression of proteins involved in MHC processing.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Deciphering the transcriptional network of the DC lineage

              Although, much progress has been made in our understanding of DC ontogeny and function, the transcriptional regulation of DC lineage commitment and functional specialization in vivo is poorly understood. We performed a comprehensive comparative analysis of CD8+, CD103+, CD11b+, and plasmacytoid DC subsets and the recently identified Macrophage DC precursors and Common DC precursors across the entire immune system. Here we characterize candidate transcriptional activators involved in myeloid progenitor commitment to the DC lineage and predicted regulators of DC functional diversity in tissues. We identify a molecular signature that distinguishes tissue DC from macrophages. We also identify a transcriptional program expressed specifically during steady-state tissue DC migration to the draining lymph nodes that may control tolerance to self-tissue antigens.
                Bookmark

                Author and article information

                Journal
                Mucosal Immunol
                Mucosal Immunol
                Mucosal Immunology
                Nature Publishing Group
                1933-0219
                1935-3456
                March 2016
                15 July 2015
                : 9
                : 2
                : 336-351
                Affiliations
                [1 ]School of Biological Sciences, Nanyang Technological University , Singapore, Singapore
                [2 ]Singapore Immunology Network, Agency for Science, Technology and Research , Singapore, Singapore
                Author notes
                [3]

                The first two authors equally contributed to this work.

                Article
                mi201564
                10.1038/mi.2015.64
                4801902
                26174764
                007f2c48-88b4-41f4-a196-175a791834bc
                Copyright © 2016 Society for Mucosal Immunology

                This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/

                History
                : 11 March 2015
                : 15 June 2015
                Categories
                Article

                Immunology
                Immunology

                Comments

                Comment on this article