2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Oocyte-derived microvilli control female fertility by optimizing ovarian follicle selection in mice

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Crosstalk between oocytes and surrounding somatic cells is crucial for mammalian oogenesis, but the structural mechanisms on oocytes to control female reproduction remain unknown. Here we combine endogenous-fluorescent tracing mouse models with a high-resolution live-cell imaging system to characterize oocyte-derived mushroom-like microvilli (Oo-Mvi), which mediate germ-somatic communication in mice. We perform 3D live-cell imaging to show that Oo-Mvi exhibit cellular characteristics that fit an exocrine function for signaling communication. We find that deletion of the microvilli-forming gene Radixin in oocytes leads to the loss of Oo-Mvi in ovaries, and causes a series of abnormalities in ovarian development, resulting in shortened reproductive lifespan in females. Mechanistically, we find that Oo-Mvi enrich oocyte-secreted factors and control their release, resulting in optimal selection of ovarian follicles. Taken together, our data show that the Oo-Mvi system controls the female reproductive lifespan by governing the fate of follicles.

          Abstract

          How structural features on oocytes regulate mammalian female reproduction is unclear. Here, the authors provide imaging and physiological evidence (for example on Radixin knockout) to identify oocyte-derived mushroom-like microvilli that control the female reproductive lifespan by governing the fate of follicles.

          Related collections

          Most cited references57

          • Record: found
          • Abstract: found
          • Article: not found

          Universal sample preparation method for proteome analysis.

          We describe a method, filter-aided sample preparation (FASP), which combines the advantages of in-gel and in-solution digestion for mass spectrometry-based proteomics. We completely solubilized the proteome in sodium dodecyl sulfate, which we then exchanged by urea on a standard filtration device. Peptides eluted after digestion on the filter were pure, allowing single-run analyses of organelles and an unprecedented depth of proteome coverage.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A global double-fluorescent Cre reporter mouse.

            The Cre/loxP system has been used extensively for conditional mutagenesis in mice. Reporters of Cre activity are important for defining the spatial and temporal extent of Cre-mediated recombination. Here we describe mT/mG, a double-fluorescent Cre reporter mouse that expresses membrane-targeted tandem dimer Tomato (mT) prior to Cre-mediated excision and membrane-targeted green fluorescent protein (mG) after excision. We show that reporter expression is nearly ubiquitous, allowing visualization of fluorescent markers in live and fixed samples of all tissues examined. We further demonstrate that mG labeling is Cre-dependent, complementary to mT at single cell resolution, and distinguishable by fluorescence-activated cell sorting. Both membrane-targeted markers outline cell morphology, highlight membrane structures, and permit visualization of fine cellular processes. In addition to serving as a global Cre reporter, the mT/mG mouse may also be used as a tool for lineage tracing, transplantation studies, and analysis of cell morphology in vivo.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              iProX: an integrated proteome resource

              Abstract Sharing of research data in public repositories has become best practice in academia. With the accumulation of massive data, network bandwidth and storage requirements are rapidly increasing. The ProteomeXchange (PX) consortium implements a mode of centralized metadata and distributed raw data management, which promotes effective data sharing. To facilitate open access of proteome data worldwide, we have developed the integrated proteome resource iProX (http://www.iprox.org) as a public platform for collecting and sharing raw data, analysis results and metadata obtained from proteomics experiments. The iProX repository employs a web-based proteome data submission process and open sharing of mass spectrometry-based proteomics datasets. Also, it deploys extensive controlled vocabularies and ontologies to annotate proteomics datasets. Users can use a GUI to provide and access data through a fast Aspera-based transfer tool. iProX is a full member of the PX consortium; all released datasets are freely accessible to the public. iProX is based on a high availability architecture and has been deployed as part of the proteomics infrastructure of China, ensuring long-term and stable resource support. iProX will facilitate worldwide data analysis and sharing of proteomics experiments.
                Bookmark

                Author and article information

                Contributors
                huazhang@cau.edu.cn
                Journal
                Nat Commun
                Nat Commun
                Nature Communications
                Nature Publishing Group UK (London )
                2041-1723
                5 May 2021
                5 May 2021
                2021
                : 12
                : 2523
                Affiliations
                [1 ]GRID grid.22935.3f, ISNI 0000 0004 0530 8290, State Key Laboratory of Agrobiotechnology, College of Biological Sciences, , China Agricultural University, ; Beijing, China
                [2 ]GRID grid.22935.3f, ISNI 0000 0004 0530 8290, State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, , China Agricultural University, ; Beijing, China
                [3 ]GRID grid.260987.2, ISNI 0000 0001 2181 583X, Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in Western China, College of Life Science, , Ningxia University, ; Yinchuan, Ningxia China
                Author information
                http://orcid.org/0000-0002-4700-5971
                Article
                22829
                10.1038/s41467-021-22829-2
                8100162
                33953177
                007024ee-b4cc-4f30-a697-b5661a2db461
                © The Author(s) 2021

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 15 July 2020
                : 31 March 2021
                Funding
                Funded by: the National Key Research and Development Program of China 2018YFC1003800
                Funded by: the National Key Research and Development Program of China (2018YFC1003700; 2017YFC1001100) and the National Natural Science Foundation of China (81873815 and 31571542).
                Categories
                Article
                Custom metadata
                © The Author(s) 2021

                Uncategorized
                oogenesis,reproductive biology
                Uncategorized
                oogenesis, reproductive biology

                Comments

                Comment on this article