14
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      International Journal of Nanomedicine (submit here)

      This international, peer-reviewed Open Access journal by Dove Medical Press focuses on the application of nanotechnology in diagnostics, therapeutics, and drug delivery systems throughout the biomedical field. Sign up for email alerts here.

      105,621 Monthly downloads/views I 7.033 Impact Factor I 10.9 CiteScore I 1.22 Source Normalized Impact per Paper (SNIP) I 1.032 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      O/W Nanoemulsion as an Adjuvant for an Inactivated H3N2 Influenza Vaccine: Based on Particle Properties and Mode of Carrying

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background and Purpose

          Adjuvant can reduce vaccine dosage and acquire better immune protection to the body, which helps to deal with the frequent outbreaks of influenza. Nanoemulsion adjuvants have been proved efficient, but the relationship between their key properties and the controlled release which greatly affects immune response is still unclear. The present work explores the role of factors such as particle size, the polydispersity index (PDI), stability and the safety of nanoemulsions by optimizing the water concentration, oil phase and modes of carrying, to explain the impact of those key factors above on adjuvant effect.

          Methods

          Isopropyl myristate (IPM), white oil, soybean oil, and grape-kernel oil were chosen as the oil phase to explore their roles in emulsion characteristics and the adjuvant effect. ICR mice were immunized with an emulsion-inactivated H3N2 split influenza vaccine mixture, to compare the nanoemulsion’s adjuvant with traditional aluminium hydroxide or complete Freund’s adjuvant.

          Results

          Particle size of all the nanoemulsion formed in our experiment ranged from 20 nm to 200 nm and did not change much when diluted with water, while the PDI decreased obviously, indicating that the particles tended to become more dispersive. Formulas with 80% or 85.6% water concentration showed significant higher HAI titer than aluminium hydroxide or complete Freund’s adjuvant, and adsorption rather than capsule mode showed higher antigen delivery efficiency. As mentioned about oil phase, G (IPM), F (white oil), H (soybean oil), and I (grape-kernel oil) showed a decreasing trend in their adjuvant efficiency, and nanoemulsion G was the best adjuvant with smaller and uniform particle size.

          Conclusion

          Emulsions with a smaller, uniform particle size had a better adjuvant effect, and the adsorption mode was generally more efficient than the capsule mode. The potential adjuvant order of the different oils was as follows: IPM > white oil > soybean oil > grape-kernel oil.

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: not found

          Nano-microparticles as immune adjuvants: correlating particle sizes and the resultant immune responses.

          The development of novel immune adjuvants is emerging as a significant area of vaccine delivery based on the continued necessity to amplify immune responses to a wide array of new antigens that are poorly immunogenic. This article specifically focuses on the application of nanoparticles and microparticles as vaccine adjuvants. Many investigators are in agreement that the size of the particles is crucial to their adjuvant activities. However, reports on correlating the size of particle-based adjuvants and the resultant immune responses have been conflicting, with investigators on both sides of the fence with impressive data in support of the effectiveness of particles with small sizes (submicron) over those with larger sizes (micron) and vice versa, while other investigators reported data that showed submicron- and micron-sized particles are effective to the same degree as immune adjuvants. We have generated a list of biological, immunological and, more importantly, vaccine formulation parameters that may have contributed to the inconsistency from different studies and made recommendations on future studies attempting to correlate the size of particulate adjuvants and the immune responses induced. The information gathered could lead to strategies to optimize the performance of nano-microparticles as immune adjuvants.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Incidence of narcolepsy after H1N1 influenza and vaccinations: Systematic review and meta-analysis

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Exploiting the pliability and lateral mobility of Pickering emulsion for enhanced vaccination

                Bookmark

                Author and article information

                Journal
                Int J Nanomedicine
                Int J Nanomedicine
                IJN
                intjnano
                International Journal of Nanomedicine
                Dove
                1176-9114
                1178-2013
                25 March 2020
                2020
                : 15
                : 2071-2083
                Affiliations
                [1 ]Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College , Kunming 650118, People’s Republic of China
                [2 ]Institute of Pathogenic Biology, School of Medicine, University of South China , Hengyang, 421001, People's Republic of China
                Author notes
                Correspondence: Yingbo Li Tel +86 13888034695 Email lyb@imbcams.com
                Author information
                http://orcid.org/0000-0002-7401-7353
                Article
                232677
                10.2147/IJN.S232677
                7104212
                006646ca-d214-42b3-a544-e961d8fcdac8
                © 2020 Zhao et al.

                This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms ( https://www.dovepress.com/terms.php).

                History
                : 01 October 2019
                : 10 March 2020
                Page count
                Figures: 7, Tables: 11, References: 42, Pages: 13
                Categories
                Original Research

                Molecular medicine
                nanoemulsion,influenza vaccine,particle properties,mode of carrying,oil phase
                Molecular medicine
                nanoemulsion, influenza vaccine, particle properties, mode of carrying, oil phase

                Comments

                Comment on this article