39
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Reproducibility of quantitative RT-PCR array in miRNA expression profiling and comparison with microarray analysis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          MicroRNAs (miRNAs) have critical functions in various biological processes. MiRNA profiling is an important tool for the identification of differentially expressed miRNAs in normal cellular and disease processes. A technical challenge remains for high-throughput miRNA expression analysis as the number of miRNAs continues to increase with in silico prediction and experimental verification. Our study critically evaluated the performance of a novel miRNA expression profiling approach, quantitative RT-PCR array (qPCR-array), compared to miRNA detection with oligonucleotide microchip (microarray).

          Results

          High reproducibility with qPCR-array was demonstrated by comparing replicate results from the same RNA sample. Pre-amplification of the miRNA cDNA improved sensitivity of the qPCR-array and increased the number of detectable miRNAs. Furthermore, the relative expression levels of miRNAs were maintained after pre-amplification. When the performance of qPCR-array and microarrays were compared using different aliquots of the same RNA, a low correlation between the two methods (r = -0.443) indicated considerable variability between the two assay platforms. Higher variation between replicates was observed in miRNAs with low expression in both assays. Finally, a higher false positive rate of differential miRNA expression was observed using the microarray compared to the qPCR-array.

          Conclusion

          Our studies demonstrated high reproducibility of TaqMan qPCR-array. Comparison between different reverse transcription reactions and qPCR-arrays performed on different days indicated that reverse transcription reactions did not introduce significant variation in the results. The use of cDNA pre-amplification increased the sensitivity of miRNA detection. Although there was variability associated with pre-amplification in low abundance miRNAs, the latter did not involve any systemic bias in the estimation of miRNA expression. Comparison between microarray and qPCR-array indicated superior sensitivity and specificity of qPCR-array.

          Related collections

          Most cited references26

          • Record: found
          • Abstract: found
          • Article: not found

          An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans.

          Two small temporal RNAs (stRNAs), lin-4 and let-7, control developmental timing in Caenorhabditis elegans. We find that these two regulatory RNAs are members of a large class of 21- to 24-nucleotide noncoding RNAs, called microRNAs (miRNAs). We report on 55 previously unknown miRNAs in C. elegans. The miRNAs have diverse expression patterns during development: a let-7 paralog is temporally coexpressed with let-7; miRNAs encoded in a single genomic cluster are coexpressed during embryogenesis; and still other miRNAs are expressed constitutively throughout development. Potential orthologs of several of these miRNA genes were identified in Drosophila and human genomes. The abundance of these tiny RNAs, their expression patterns, and their evolutionary conservation imply that, as a class, miRNAs have broad regulatory functions in animals.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            An oligonucleotide microchip for genome-wide microRNA profiling in human and mouse tissues.

            MicroRNAs (miRNAs) are a class of small noncoding RNA genes recently found to be abnormally expressed in several types of cancer. Here, we describe a recently developed methodology for miRNA gene expression profiling based on the development of a microchip containing oligonucleotides corresponding to 245 miRNAs from human and mouse genomes. We used these microarrays to obtain highly reproducible results that revealed tissue-specific miRNA expression signatures, data that were confirmed by assessment of expression by Northern blots, real-time RT-PCR, and literature search. The microchip oligolibrary can be expanded to include an increasing number of miRNAs discovered in various species and is useful for the analysis of normal and disease states.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Evaluation of gene expression measurements from commercial microarray platforms.

              P. Tan (2003)
              Multiple commercial microarrays for measuring genome-wide gene expression levels are currently available, including oligonucleotide and cDNA, single- and two-channel formats. This study reports on the results of gene expression measurements generated from identical RNA preparations that were obtained using three commercially available microarray platforms. RNA was collected from PANC-1 cells grown in serum-rich medium and at 24 h following the removal of serum. Three biological replicates were prepared for each condition, and three experimental replicates were produced for the first biological replicate. RNA was labeled and hybridized to microarrays from three major suppliers according to manufacturers' protocols, and gene expression measurements were obtained using each platform's standard software. For each platform, gene targets from a subset of 2009 common genes were compared. Correlations in gene expression levels and comparisons for significant gene expression changes in this subset were calculated, and showed considerable divergence across the different platforms, suggesting the need for establishing industrial manufacturing standards, and further independent and thorough validation of the technology.
                Bookmark

                Author and article information

                Journal
                BMC Genomics
                BMC Genomics
                BioMed Central
                1471-2164
                2009
                28 August 2009
                : 10
                : 407
                Affiliations
                [1 ]Department of Surgery, University of Texas Health Science Center, San Antonio, TX 78229, USA
                [2 ]Department of Surgery, South Texas Veterans Health Care System, San Antonio, TX 78229, USA
                [3 ]Department of Epidemiology and Biostatistics, University of Texas Health Science Center, San Antonio, TX 78229, USA
                [4 ]Department of Pathology, University of Texas Health Science Center, San Antonio, TX 78229, USA
                [5 ]Department of Periodontics, University of Texas Health Science Center, San Antonio, TX 78229, USA
                [6 ]Department of Medicine, University of Texas Health Science Center, San Antonio, TX 78229, USA
                [7 ]Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center, San Antonio, TX 78229, USA
                Article
                1471-2164-10-407
                10.1186/1471-2164-10-407
                2753550
                19715577
                001079f8-7b2c-4320-ae5a-b9785319d176
                Copyright © 2009 Chen et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 5 March 2009
                : 28 August 2009
                Categories
                Methodology Article

                Genetics
                Genetics

                Comments

                Comment on this article