7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Recent progress and remaining challenges in post-combustion CO2 capture using metal-organic frameworks (MOFs)

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references237

          • Record: found
          • Abstract: found
          • Article: not found

          Functional Porous Coordination Polymers

          The chemistry of the coordination polymers has in recent years advanced extensively, affording various architectures, which are constructed from a variety of molecular building blocks with different interactions between them. The next challenge is the chemical and physical functionalization of these architectures, through the porous properties of the frameworks. This review concentrates on three aspects of coordination polymers: 1). the use of crystal engineering to construct porous frameworks from connectors and linkers ("nanospace engineering"), 2). characterizing and cataloging the porous properties by functions for storage, exchange, separation, etc., and 3). the next generation of porous functions based on dynamic crystal transformations caused by guest molecules or physical stimuli. Our aim is to present the state of the art chemistry and physics of and in the micropores of porous coordination polymers.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Design and synthesis of an exceptionally stable and highly porous metal-organic framework

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Exceptional chemical and thermal stability of zeolitic imidazolate frameworks.

              Twelve zeolitic imidazolate frameworks (ZIFs; termed ZIF-1 to -12) have been synthesized as crystals by copolymerization of either Zn(II) (ZIF-1 to -4, -6 to -8, and -10 to -11) or Co(II) (ZIF-9 and -12) with imidazolate-type links. The ZIF crystal structures are based on the nets of seven distinct aluminosilicate zeolites: tetrahedral Si(Al) and the bridging O are replaced with transition metal ion and imidazolate link, respectively. In addition, one example of mixed-coordination imidazolate of Zn(II) and In(III) (ZIF-5) based on the garnet net is reported. Study of the gas adsorption and thermal and chemical stability of two prototypical members, ZIF-8 and -11, demonstrated their permanent porosity (Langmuir surface area = 1,810 m(2)/g), high thermal stability (up to 550 degrees C), and remarkable chemical resistance to boiling alkaline water and organic solvents.
                Bookmark

                Author and article information

                Journal
                Progress in Energy and Combustion Science
                Progress in Energy and Combustion Science
                Elsevier BV
                03601285
                September 2020
                September 2020
                : 80
                : 100849
                Article
                10.1016/j.pecs.2020.100849
                00102d6b-0e78-4b02-8769-9b470bbf666b
                © 2020

                https://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article