15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Lipocalin 2 over-expression facilitates progress of castration-resistant prostate cancer via improving androgen receptor transcriptional activity

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Castration-resistant prostate cancer (CRPC) is the lethal phenotype of prostate cancer. Lipocalin 2 (LCN2) is aberrantly expressed in many cancers including primary prostate cancer (PCa), but its role in CRPC has not been reported.

          Results

          LCN2 expression was upregulated in human primary PCa and CRPC tissues. Overexpression of LCN2 promoted C4-2B and 22RV1 cell proliferation while knockdown of LCN2 markedly inhibited C4-2B and 22RV1 cell growth. LCN2 overexpression led to increased AR downstream gene SLC45A3 without upregulating AR expression. In the xenograft model, overexpression of LCN2 significantly promoted tumor growth.

          Methods

          LCN2 expression was detected in primary PCa and CRPC tissues and cell lines C4-2B and 22RV1 using immunohistochemistry and western blotting, respectively. Serum LCN2 level was detected vi ELISA. Lentiviruses-mediated over-expression of LCN2 and LCN2 knockdown were performed in CRPC cell lines. Expressions of androgen receptor (AR) downstream genes was examined in cell lines, in CRPC tissues, and in animal models.

          Conclusion

          LCN2 could facilitate cell proliferation of CRPC via AR transcriptional activity. LCN2 could be a novel target in CRPC.

          Related collections

          Most cited references26

          • Record: found
          • Abstract: found
          • Article: not found

          Molecular determinants of resistance to antiandrogen therapy.

          Using microarray-based profiling of isogenic prostate cancer xenograft models, we found that a modest increase in androgen receptor mRNA was the only change consistently associated with the development of resistance to antiandrogen therapy. This increase in androgen receptor mRNA and protein was both necessary and sufficient to convert prostate cancer growth from a hormone-sensitive to a hormone-refractory stage, and was dependent on a functional ligand-binding domain. Androgen receptor antagonists showed agonistic activity in cells with increased androgen receptor levels; this antagonist-agonist conversion was associated with alterations in the recruitment of coactivators and corepressors to the promoters of androgen receptor target genes. Increased levels of androgen receptor confer resistance to antiandrogens by amplifying signal output from low levels of residual ligand, and by altering the normal response to antagonists. These findings provide insight toward the design of new antiandrogens.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Maintenance of intratumoral androgens in metastatic prostate cancer: a mechanism for castration-resistant tumor growth.

            Therapy for advanced prostate cancer centers on suppressing systemic androgens and blocking activation of the androgen receptor (AR). Despite anorchid serum androgen levels, nearly all patients develop castration-resistant disease. We hypothesized that ongoing steroidogenesis within prostate tumors and the maintenance of intratumoral androgens may contribute to castration-resistant growth. Using mass spectrometry and quantitative reverse transcription-PCR, we evaluated androgen levels and transcripts encoding steroidogenic enzymes in benign prostate tissue, untreated primary prostate cancer, metastases from patients with castration-resistant prostate cancer, and xenografts derived from castration-resistant metastases. Testosterone levels within metastases from anorchid men [0.74 ng/g; 95% confidence interval (95% CI), 0.59-0.89] were significantly higher than levels within primary prostate cancers from untreated eugonadal men (0.23 ng/g; 95% CI, 0.03-0.44; P < 0.0001). Compared with primary prostate tumors, castration-resistant metastases displayed alterations in genes encoding steroidogenic enzymes, including up-regulated expression of FASN, CYP17A1, HSD3B1, HSD17B3, CYP19A1, and UGT2B17 and down-regulated expression of SRD5A2 (P < 0.001 for all). Prostate cancer xenografts derived from castration-resistant tumors maintained similar intratumoral androgen levels when passaged in castrate compared with eugonadal animals. Metastatic prostate cancers from anorchid men express transcripts encoding androgen-synthesizing enzymes and maintain intratumoral androgens at concentrations capable of activating AR target genes and maintaining tumor cell survival. We conclude that intracrine steroidogenesis may permit tumors to circumvent low levels of circulating androgens. Maximal therapeutic efficacy in the treatment of castration-resistant prostate cancer will require novel agents capable of inhibiting intracrine steroidogenic pathways within the prostate tumor microenvironment.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The lipocalin protein family: structure and function.

              The lipocalin protein family is a large group of small extracellular proteins. The family demonstrates great diversity at the sequence level; however, most lipocalins share three characteristic conserved sequence motifs, the kernel lipocalins, while a group of more divergent family members, the outlier lipocalins, share only one. Belying this sequence dissimilarity, lipocalin crystal structures are highly conserved and comprise a single eight-stranded continuously hydrogen-bonded antiparallel beta-barrel, which encloses an internal ligand-binding site. Together with two other families of ligand-binding proteins, the fatty-acid-binding proteins (FABPs) and the avidins, the lipocalins form part of an overall structural superfamily: the calycins. Members of the lipocalin family are characterized by several common molecular-recognition properties: the ability to bind a range of small hydrophobic molecules, binding to specific cell-surface receptors and the formation of complexes with soluble macromolecules. The varied biological functions of the lipocalins are mediated by one or more of these properties. In the past, the lipocalins have been classified as transport proteins; however, it is now clear that the lipocalins exhibit great functional diversity, with roles in retinol transport, invertebrate cryptic coloration, olfaction and pheromone transport, and prostaglandin synthesis. The lipocalins have also been implicated in the regulation of cell homoeostasis and the modulation of the immune response, and, as carrier proteins, to act in the general clearance of endogenous and exogenous compounds.
                Bookmark

                Author and article information

                Journal
                Oncotarget
                Oncotarget
                Oncotarget
                ImpactJ
                Oncotarget
                Impact Journals LLC
                1949-2553
                27 September 2016
                1 September 2016
                : 7
                : 39
                : 64309-64317
                Affiliations
                1 Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
                2 Department of Urology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
                Author notes
                Correspondence to: Jianfeng Xu, drwang_shan@ 123456126.com
                Article
                11790
                10.18632/oncotarget.11790
                5325444
                27602760
                000634bf-8f02-4d4d-8bc2-ef1d04d3ba8e
                Copyright: © 2016 Ding et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 25 April 2016
                : 13 August 2016
                Categories
                Research Paper

                Oncology & Radiotherapy
                castration-resistant prostate cancer,lipocalin 2,androgen receptor,cell proliferation,transcriptional activity

                Comments

                Comment on this article