There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.
Near-infrared (NIR) spectroscopy has increasingly been adopted as an analytical tool in various fields, such as the petrochemical, pharmaceutical, environmental, clinical, agricultural, food and biomedical sectors during the past 15 years. A NIR spectrum of a sample is typically measured by modern scanning instruments at hundreds of equally spaced wavelengths. The large number of spectral variables in most data sets encountered in NIR spectral chemometrics often renders the prediction of a dependent variable unreliable. Recently, considerable effort has been directed towards developing and evaluating different procedures that objectively identify variables which contribute useful information and/or eliminate variables containing mostly noise. This review focuses on the variable selection methods in NIR spectroscopy. Selection methods include some classical approaches, such as manual approach (knowledge based selection), "Univariate" and "Sequential" selection methods; sophisticated methods such as successive projections algorithm (SPA) and uninformative variable elimination (UVE), elaborate search-based strategies such as simulated annealing (SA), artificial neural networks (ANN) and genetic algorithms (GAs) and interval base algorithms such as interval partial least squares (iPLS), windows PLS and iterative PLS. Wavelength selection with B-spline, Kalman filtering, Fisher's weights and Bayesian are also mentioned. Finally, the websites of some variable selection software and toolboxes for non-commercial use are given. Copyright 2010 Elsevier B.V. All rights reserved.
This paper proposes a new method to divide a pool of samples into calibration and validation subsets for multivariate modelling. The proposed method is of value for analytical applications involving complex matrices, in which the composition variability of real samples cannot be easily reproduced by optimized experimental designs. A stepwise procedure is employed to select samples according to their differences in both x (instrumental responses) and y (predicted parameter) spaces. The proposed technique is illustrated in a case study involving the prediction of three quality parameters (specific mass and distillation temperatures at which 10 and 90% of the sample has evaporated) of diesel by NIR spectrometry and PLS modelling. For comparison, PLS models are also constructed by full cross-validation, as well as by using the Kennard-Stone and random sampling methods for calibration and validation subset partitioning. The obtained models are compared in terms of prediction performance by employing an independent set of samples not used for calibration or validation. The results of F-tests at 95% confidence level reveal that the proposed technique may be an advantageous alternative to the other three strategies.
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.