Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
26
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Call for Papers: Extracellular Vesicles: Broadening Horizons in Neurodegenerative Diseases

      Submit here by September 30, 2025

      About Neurodegenerative Diseases: 1.9 Impact Factor I 5.9 CiteScore I 0.648 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: not found

      The electric organ discharge of Brachyhypopomus pinnicaudatus. The effects of environmental variables on waveform generation.

      Brain, Behavior and Evolution
      Air, Animal Communication, Animals, Electric Conductivity, Electric Fish, physiology, Electric Organ, drug effects, Electromagnetic Fields, Electrophysiology, Environment, Female, Head, Male, Neuromuscular Nondepolarizing Agents, pharmacology, Sex Characteristics, Sexual Behavior, Animal, Tail, Temperature, Time Factors, Tubocurarine

      Read this article at

      ScienceOpenPubMed
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The electric organ discharge of Brachyhypopomus pinnicaudatus was studied by recording (1) the discharge field potentials in water at different conductivities and temperatures and (2) the spatiotemporal pattern of electromotive forces of the equivalent source. An early deflection, head positive (P wave), and a late deflection, head negative (N wave), are the major components of the discharge, however a striking double positive peak is generated at the abdominal level. Comparisons of this species with other pulse gymnotids provide evidence for common patterns of organization of the electrogenic system: (1) There is a head-to-tail activation wave along the fish; (2) the electromotive force increases exponentially from head to tail, but it is differentially attenuated by the passive tissues in male and females; (3) the abdominal region generates a complex species-specific waveform, whereas the tail discharge is similar across species. In B. pinnicaudatus the electric organ discharge waveform is sensitive to endocrine and environmental stimuli. The effect of seasonal sex differences on electrogenic and passive tissue, the changes in impedance matching between the fish's body and the environment, and the modulation of membrane properties by temperature, are able to modify the EOD waveform. Since these factors change during the breeding season, their appropriate combination might be crucial for reproduction.

          Related collections

          Most cited references1

          • Record: found
          • Abstract: not found
          • Article: not found

          Evolution of electroreception

            Bookmark

            Author and article information

            Comments

            Comment on this article