2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Analysis of a novel immune checkpoint, Siglec‐15, in pancreatic ductal adenocarcinoma

      research-article

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Siglec‐15, a novel immune checkpoint, is an emerging target for next‐generation cancer immunotherapy. However, the role of Siglec‐15 in pancreatic ductal adenocarcinoma (PDAC) remains poorly understood. We investigated the expression of Siglec‐15 and its association with clinicopathological characteristics, programmed cell death‐ligand 1 (PD‐L1), immune cells, and DNA damage repair (DDR) molecules in a cohort of 291 patients with PDAC. Positive tumour cell expression of Siglec‐15 and PD‐L1 was observed in 18.6 and 30.3% of the samples, respectively. We also detected Siglec‐15 positivity in macrophages in 3.4% of patients. Co‐expression of Siglec‐15 with PD‐L1 was observed in 6.1% of the patients. A total of 33 PD‐L1‐negative samples (18.0%) were Siglec‐15‐positive. Siglec‐15 was observed more frequently in moderate‐to‐well‐differentiated tumours. Siglec‐15 was associated with a low density of Tregs and CD45RO T cells, high BRCA1 expression, and improved survival. Both Siglec‐15 and PD‐L1 are independent factors of patient outcomes. The prognostic significance of Siglec‐15 for survival was more discriminative in lymph node‐negative, high BRCA1 expression, or low BRCA2 expression tumours than in lymph node‐positive, low BRCA1 expression, or high BRCA2 expression tumours. In conclusion, we identified Siglec‐15 as a promising predictor for prognosis combined with different DDR molecular statuses and complex tumour‐infiltrating cells in PDAC. Targeting Siglec‐15 may be a novel therapeutic option for patients who are unresponsive to anti‐PD‐1 therapy. Future studies are needed to validate the prognostic significance of Siglec‐15 and to investigate its regulatory mechanisms in this disease.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: found
          • Article: not found

          Cancer statistics, 2018

          Each year, the American Cancer Society estimates the numbers of new cancer cases and deaths that will occur in the United States and compiles the most recent data on cancer incidence, mortality, and survival. Incidence data, available through 2014, were collected by the Surveillance, Epidemiology, and End Results Program; the National Program of Cancer Registries; and the North American Association of Central Cancer Registries. Mortality data, available through 2015, were collected by the National Center for Health Statistics. In 2018, 1,735,350 new cancer cases and 609,640 cancer deaths are projected to occur in the United States. Over the past decade of data, the cancer incidence rate (2005-2014) was stable in women and declined by approximately 2% annually in men, while the cancer death rate (2006-2015) declined by about 1.5% annually in both men and women. The combined cancer death rate dropped continuously from 1991 to 2015 by a total of 26%, translating to approximately 2,378,600 fewer cancer deaths than would have been expected if death rates had remained at their peak. Of the 10 leading causes of death, only cancer declined from 2014 to 2015. In 2015, the cancer death rate was 14% higher in non-Hispanic blacks (NHBs) than non-Hispanic whites (NHWs) overall (death rate ratio [DRR], 1.14; 95% confidence interval [95% CI], 1.13-1.15), but the racial disparity was much larger for individuals aged <65 years (DRR, 1.31; 95% CI, 1.29-1.32) compared with those aged ≥65 years (DRR, 1.07; 95% CI, 1.06-1.09) and varied substantially by state. For example, the cancer death rate was lower in NHBs than NHWs in Massachusetts for all ages and in New York for individuals aged ≥65 years, whereas for those aged <65 years, it was 3 times higher in NHBs in the District of Columbia (DRR, 2.89; 95% CI, 2.16-3.91) and about 50% higher in Wisconsin (DRR, 1.78; 95% CI, 1.56-2.02), Kansas (DRR, 1.51; 95% CI, 1.25-1.81), Louisiana (DRR, 1.49; 95% CI, 1.38-1.60), Illinois (DRR, 1.48; 95% CI, 1.39-1.57), and California (DRR, 1.45; 95% CI, 1.38-1.54). Larger racial inequalities in young and middle-aged adults probably partly reflect less access to high-quality health care. CA Cancer J Clin 2018;68:7-30. © 2018 American Cancer Society.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade

            The genomes of cancers deficient in mismatch repair contain exceptionally high numbers of somatic mutations. In a proof-of-concept study, we previously showed that colorectal cancers with mismatch repair deficiency were sensitive to immune checkpoint blockade with antibodies to programmed death receptor-1 (PD-1). We have now expanded this study to evaluate the efficacy of PD-1 blockade in patients with advanced mismatch repair-deficient cancers across 12 different tumor types. Objective radiographic responses were observed in 53% of patients, and complete responses were achieved in 21% of patients. Responses were durable, with median progression-free survival and overall survival still not reached. Functional analysis in a responding patient demonstrated rapid in vivo expansion of neoantigen-specific T cell clones that were reactive to mutant neopeptides found in the tumor. These data support the hypothesis that the large proportion of mutant neoantigens in mismatch repair-deficient cancers make them sensitive to immune checkpoint blockade, regardless of the cancers' tissue of origin.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found

              Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States.

              Cancer incidence and deaths in the United States were projected for the most common cancer types for the years 2020 and 2030 based on changing demographics and the average annual percentage changes in incidence and death rates. Breast, prostate, and lung cancers will remain the top cancer diagnoses throughout this time, but thyroid cancer will replace colorectal cancer as the fourth leading cancer diagnosis by 2030, and melanoma and uterine cancer will become the fifth and sixth most common cancers, respectively. Lung cancer is projected to remain the top cancer killer throughout this time period. However, pancreas and liver cancers are projected to surpass breast, prostate, and colorectal cancers to become the second and third leading causes of cancer-related death by 2030, respectively. Advances in screening, prevention, and treatment can change cancer incidence and/or death rates, but it will require a concerted effort by the research and healthcare communities now to effect a substantial change for the future. ©2014 American Association for Cancer Research.
                Bookmark

                Author and article information

                Contributors
                chenjie@pumch.cn
                Journal
                J Pathol Clin Res
                J Pathol Clin Res
                10.1002/(ISSN)2056-4538
                CJP2
                The Journal of Pathology: Clinical Research
                John Wiley & Sons, Inc. (Hoboken, USA )
                2056-4538
                27 January 2022
                May 2022
                : 8
                : 3 ( doiID: 10.1002/cjp2.v8.3 )
                : 268-278
                Affiliations
                [ 1 ] Department of Pathology Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing PR China
                Author notes
                [*] [* ] Correspondence to: Jie Chen, Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Dongcheng District, Beijing 100730, PR China. E‐mail: chenjie@ 123456pumch.cn

                Author information
                https://orcid.org/0000-0002-3677-4281
                https://orcid.org/0000-0001-9401-3141
                https://orcid.org/0000-0002-8553-708X
                https://orcid.org/0000-0001-5914-5675
                https://orcid.org/0000-0002-8421-7033
                https://orcid.org/0000-0002-3745-1097
                https://orcid.org/0000-0002-2658-9525
                Article
                CJP2260
                10.1002/cjp2.260
                8977273
                35083884
                efdab89f-1591-4aec-b265-45feacc64f2c
                © 2022 The Authors. The Journal of Pathology: Clinical Research published by The Pathological Society of Great Britain and Ireland & John Wiley & Sons, Ltd.

                This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.

                History
                : 22 November 2021
                : 24 September 2021
                : 03 January 2022
                Page count
                Figures: 3, Tables: 2, Pages: 11, Words: 6502
                Funding
                Funded by: Chinese Academy of Medical Sciences Initiative for Innovative Medicine , doi 10.13039/501100019018;
                Award ID: CAMS‐2016‐I2M‐1‐001
                Funded by: National Natural Science Foundation of China , doi 10.13039/501100001809;
                Award ID: 81472326
                Award ID: 81672648
                Funded by: National Scientific Data Sharing Platform for Population and Health
                Award ID: NCMI‐YF01N‐201906
                Categories
                Original Article
                Original Articles
                Custom metadata
                2.0
                May 2022
                Converter:WILEY_ML3GV2_TO_JATSPMC version:6.1.3 mode:remove_FC converted:03.04.2022

                pancreatic ductal adenocarcinoma,siglec‐15,pd‐l1,immune infiltrates,dna damage repair

                Comments

                Comment on this article