Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
72
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Effects of drugs of abuse on hippocampal plasticity and hippocampus-dependent learning and memory: contributions to development and maintenance of addiction.

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          It has long been hypothesized that conditioning mechanisms play major roles in addiction. Specifically, the associations between rewarding properties of drugs of abuse and the drug context can contribute to future use and facilitate the transition from initial drug use into drug dependency. On the other hand, the self-medication hypothesis of drug abuse suggests that negative consequences of drug withdrawal result in relapse to drug use as an attempt to alleviate the negative symptoms. In this review, we explored these hypotheses and the involvement of the hippocampus in the development and maintenance of addiction to widely abused drugs such as cocaine, amphetamine, nicotine, alcohol, opiates, and cannabis. Studies suggest that initial exposure to stimulants (i.e., cocaine, nicotine, and amphetamine) and alcohol may enhance hippocampal function and, therefore, the formation of augmented drug-context associations that contribute to the development of addiction. In line with the self-medication hypothesis, withdrawal from stimulants, ethanol, and cannabis results in hippocampus-dependent learning and memory deficits, which suggest that an attempt to alleviate these deficits may contribute to relapse to drug use and maintenance of addiction. Interestingly, opiate withdrawal leads to enhancement of hippocampus-dependent learning and memory. Given that a conditioned aversion to drug context develops during opiate withdrawal, the cognitive enhancement in this case may result in the formation of an augmented association between withdrawal-induced aversion and withdrawal context. Therefore, individuals with opiate addiction may return to opiate use to avoid aversive symptoms triggered by the withdrawal context. Overall, the systematic examination of the role of the hippocampus in drug addiction may help to formulate a better understanding of addiction and underlying neural substrates.

          Related collections

          Most cited references418

          • Record: found
          • Abstract: found
          • Article: not found

          A synaptic model of memory: long-term potentiation in the hippocampus.

          Long-term potentiation of synaptic transmission in the hippocampus is the primary experimental model for investigating the synaptic basis of learning and memory in vertebrates. The best understood form of long-term potentiation is induced by the activation of the N-methyl-D-aspartate receptor complex. This subtype of glutamate receptor endows long-term potentiation with Hebbian characteristics, and allows electrical events at the postsynaptic membrane to be transduced into chemical signals which, in turn, are thought to activate both pre- and postsynaptic mechanisms to generate a persistent increase in synaptic strength.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Loss of recent memory after bilateral hippocampal lesions.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The human hippocampus and spatial and episodic memory.

              Finding one's way around an environment and remembering the events that occur within it are crucial cognitive abilities that have been linked to the hippocampus and medial temporal lobes. Our review of neuropsychological, behavioral, and neuroimaging studies of human hippocampal involvement in spatial memory concentrates on three important concepts in this field: spatial frameworks, dimensionality, and orientation and self-motion. We also compare variation in hippocampal structure and function across and within species. We discuss how its spatial role relates to its accepted role in episodic memory. Five related studies use virtual reality to examine these two types of memory in ecologically valid situations. While processing of spatial scenes involves the parahippocampus, the right hippocampus appears particularly involved in memory for locations within an environment, with the left hippocampus more involved in context-dependent episodic or autobiographical memory.
                Bookmark

                Author and article information

                Journal
                Learn. Mem.
                Learning & memory (Cold Spring Harbor, N.Y.)
                Cold Spring Harbor Laboratory
                1549-5485
                1072-0502
                Oct 2016
                : 23
                : 10
                Affiliations
                [1 ] Department of Biobehavioral Health, Penn State University, University Park, Pennsylvania 16802, USA.
                [2 ] Department of Biobehavioral Health, Penn State University, University Park, Pennsylvania 16802, USA thomas.gould@psu.edu.
                Article
                23/10/515
                10.1101/lm.042192.116
                5026208
                27634143
                a2f96f4c-f707-41c2-97d7-445e6bb31771
                History

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content64

                Cited by95

                Most referenced authors2,760