30
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Improved Peptide and Protein Torsional Energetics with the OPLS-AA Force Field

      Journal of Chemical Theory and Computation
      American Chemical Society (ACS)

      Read this article at

      ScienceOpenPublisher
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: found
          • Article: not found

          How fast-folding proteins fold.

          An outstanding challenge in the field of molecular biology has been to understand the process by which proteins fold into their characteristic three-dimensional structures. Here, we report the results of atomic-level molecular dynamics simulations, over periods ranging between 100 μs and 1 ms, that reveal a set of common principles underlying the folding of 12 structurally diverse proteins. In simulations conducted with a single physics-based energy function, the proteins, representing all three major structural classes, spontaneously and repeatedly fold to their experimentally determined native structures. Early in the folding process, the protein backbone adopts a nativelike topology while certain secondary structure elements and a small number of nonlocal contacts form. In most cases, folding follows a single dominant route in which elements of the native structure appear in an order highly correlated with their propensity to form in the unfolded state.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The Polarizable Atomic Multipole-based AMOEBA Force Field for Proteins.

            Development of the AMOEBA (Atomic Multipole Optimized Energetics for Biomolecular Simulation) force field for proteins is presented. The current version (AMOEBA-2013) utilizes permanent electrostatic multipole moments through the quadrupole at each atom, and explicitly treats polarization effects in various chemical and physical environments. The atomic multipole electrostatic parameters for each amino acid residue type are derived from high-level gas phase quantum mechanical calculations via a consistent and extensible protocol. Molecular polarizability is modeled via a Thole-style damped interactive induction model based upon distributed atomic polarizabilities. Inter- and intramolecular polarization is treated in a consistent fashion via the Thole model. The intramolecular polarization model ensures transferability of electrostatic parameters among different conformations, as demonstrated by the agreement between QM and AMOEBA electrostatic potentials, and dipole moments of dipeptides. The backbone and side chain torsional parameters were determined by comparing to gas-phase QM (RI-TRIM MP2/CBS) conformational energies of dipeptides and to statistical distributions from the Protein Data Bank. Molecular dynamics simulations are reported for short peptides in explicit water to examine their conformational properties in solution. Overall the calculated conformational free energies and J-coupling constants are consistent with PDB statistics and experimental NMR results, respectively. In addition, the experimental crystal structures of a number of proteins are well maintained during molecular dynamics (MD) simulation. While further calculations are necessary to fully validate the force field, initial results suggest the AMOEBA polarizable multipole force field is able to describe the structure and energetics of peptides and proteins, in both gas-phase and solution environments.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Crystallographic R factor refinement by molecular dynamics.

              Molecular dynamics was used to refine macromolecular structures by incorporating the difference between the observed crystallographic structure factor amplitude and that calculated from an assumed atomic model into the total energy of the system. The method has a radius of convergence that is larger than that of conventional restrained least-squares refinement. Test cases showed that the need for manual corrections during refinement of macromolecular crystal structures is reduced. In crambin, the dynamics calculation moved residues that were misplaced by more than 3 angstroms into the correct positions without human intervention.
                Bookmark

                Author and article information

                Journal
                10.1021/acs.jctc.5b00356
                http://pubs.acs.org/page/policy/authorchoice_termsofuse.html

                Comments

                Comment on this article