15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Advanced Wound Dressing for Real-Time pH Monitoring

      research-article

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The rapid evolution of wearable technologies is giving rise to a strong push for textile chemical sensors design targeting the real-time collection of vital parameters for improved healthcare. Among the most promising applications, monitoring of nonhealing wounds is a scarcely explored medical field that still lacks quantitative tools for the management of the healing process. In this work, a smart bandage is developed for the real-time monitoring of wound pH, which has been reported to correlate with the healing stages, thus potentially giving direct access to the wound status without disturbing the wound bed. The fully textile device is realized by integrating a sensing layer, including the two-terminal pH sensor made of a semiconducting polymer and iridium oxide particles, and an absorbent layer ensuring the delivery of a continuous wound exudate flow across the sensor area. The two-terminal sensor exhibits a reversible response with a sensitivity of (59 ± 4) μA pH –1 in the medically relevant pH range for wound monitoring (pH 6–9), and its performance is not substantially affected either by the presence of the most common chemical interferents or by temperature gradients from 22 to 40 °C. Thanks to the robust sensing mechanism based on potentiometric transduction and the simple device geometry, the fully assembled smart bandage was successfully validated in flow analysis using synthetic wound exudate.

          Related collections

          Most cited references71

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Challenges in the Treatment of Chronic Wounds

          Significance: Chronic wounds include, but are not limited, to diabetic foot ulcers, venous leg ulcers, and pressure ulcers. They are a challenge to wound care professionals and consume a great deal of healthcare resources around the globe. This review discusses the pathophysiology of complex chronic wounds and the means and modalities currently available to achieve healing in such patients. Recent Advances: Although often difficult to treat, an understanding of the underlying pathophysiology and specific attention toward managing these perturbations can often lead to successful healing. Critical Issues: Overcoming the factors that contribute to delayed healing are key components of a comprehensive approach to wound care and present the primary challenges to the treatment of chronic wounds. When wounds fail to achieve sufficient healing after 4 weeks of standard care, reassessment of underlying pathology and consideration of the need for advanced therapeutic agents should be undertaken. However, selection of an appropriate therapy is often not evidence based. Future Directions: Basic tenets of care need to be routinely followed, and a systematic evaluation of patients and their wounds will also facilitate appropriate care. Underlying pathologies, which result in the failure of these wounds to heal, differ among various types of chronic wounds. A better understanding of the differences between various types of chronic wounds at the molecular and cellular levels should improve our treatment approaches, leading to better healing rates, and facilitate the development of new more effective therapies. More evidence for the efficacy of current and future advanced wound therapies is required for their appropriate use.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Angiogenesis in wound healing.

            During wound healing, angiogenic capillary sprouts invade the fibrin/fibronectin-rich wound clot and within a few days organize into a microvascular network throughout the granulation tissue. As collagen accumulates in the granulation tissue to produce scar, the density of blood vessels diminishes. A dynamic interaction occurs among endothelial cells, angiogenic cytokines, such as FGF, VEGF, TGF-beta, angiopoietin, and mast cell tryptase, and the extracellular matrix (ECM) environment. Specific endothelial cell ECM receptors are critical for these morphogenetic changes in blood vessels during wound repair. In particular, alpha(v)beta3, the integrin receptor for fibrin and fibronectin, appears to be required for wound angiogenesis: alpha(v)beta3 is expressed on the tips of angiogenic capillary sprouts invading the wound clot, and functional inhibitors of alpha(v)beta3 transiently inhibit granulation tissue formation. Recent investigations have shown that the wound ECM can regulate angiogenesis in part by modulating integrin receptor expression. mRNA levels of alpha(v)beta3 in human dermal microvascular endothelial cells either plated on fibronectin or overlaid by fibrin gel were higher than in cells plated on collagen or overlaid by collagen gel. Wound angiogenesis also appears to be regulated by endothelial cell interaction with the specific three-dimensional ECM environment in the wound space. In an in vitro model of human sprout angiogenesis, three-dimensional fibrin gel, simulating early wound clot, but not collagen gel, simulating late granulation tissue, supported capillary sprout formation. Understanding the molecular mechanisms that regulate wound angiogenesis, particularly how ECM modulates ECM receptor and angiogenic factor requirements, may provide new approaches for treating chronic wounds.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Influence of pH on wound-healing: a new perspective for wound-therapy?

              Wound healing is a complex regeneration process, which is characterised by intercalating degradation and re-assembly of connective tissue and epidermal layer. The pH value within the wound-milieu influences indirectly and directly all biochemical reactions taking place in this process of healing. Interestingly it is so far a neglected parameter for the overall outcome. For more than three decades the common assumption amongst physicians was that a low pH value, such as it is found on normal skin, is favourable for wound healing. However, investigations have shown that in fact some healing processes such as the take-rate of skin-grafts require an alkaline milieu. The matter is thus much more complicated than it was assumed. This review article summarises the existing literature dealing with the topic of pH value within the wound-milieu, its influence on wound healing and critically discusses the currently existing data in this field. The conclusion to be drawn at present is that the wound pH indeed proves to be a potent influential factor for the healing process and that different pH ranges are required for certain distinct phases of wound healing. Further systematic data needs to be collected for a better understanding of the pH requirements under specific circumstances. This is important as it will help to develop new pH targeted therapeutic strategies.
                Bookmark

                Author and article information

                Journal
                ACS Sens
                ACS Sens
                se
                ascefj
                ACS Sensors
                American Chemical Society
                2379-3694
                02 June 2021
                25 June 2021
                : 6
                : 6
                : 2366-2377
                Affiliations
                []Dipartimento di Chimica Industriale “Toso Montanari”, Università di Bologna , Viale del Risorgimento 4, 40136 Bologna, Italy
                []Dipartimento di Fisica e Astronomia, Università di Bologna , Viale Berti Pichat 6/2, 40127 Bologna, Italy
                Author notes
                Author information
                https://orcid.org/0000-0001-6293-3920
                https://orcid.org/0000-0002-0669-7369
                https://orcid.org/0000-0002-2844-9817
                https://orcid.org/0000-0001-7298-0528
                Article
                10.1021/acssensors.1c00552
                8294608
                34076430
                b2b621c2-0744-411c-b8ec-bab0be1619b9
                © 2021 The Authors. Published by American Chemical Society

                Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained ( https://creativecommons.org/licenses/by/4.0/).

                History
                : 16 March 2021
                : 24 May 2021
                Funding
                Funded by: Italian Ministry of Economic Development, doi NA;
                Award ID: 2020 - Project â??Alma Value â?? Proof of Concept
                Funded by: European Union FESR FSE, PON Research and Innovation 2014 â?? 2020 and FSC, doi NA;
                Award ID: ARS01-00996 â??TEX-STYLE Nuovi tessuti intelligent
                Categories
                Article
                Custom metadata
                se1c00552
                se1c00552

                irox,pedot:pss,ph sensing,wound dressing,wound healing monitoring,bioelectronics

                Comments

                Comment on this article