184
views
0
recommends
+1 Recommend
0 collections
    26
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Influence of sex differences on microRNA gene regulation in disease

      review-article
      1 , 1 ,
      Biology of Sex Differences
      BioMed Central

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Sexual dimorphism is observed in most human diseases. The difference in the physiology and genetics between sexes can contribute tremendously to the disease prevalence, severity, and outcome. Both hormonal and genetic differences between males and females can lead to differences in gene expression patterns that can influence disease risk and course. MicroRNAs have emerged as potential regulatory molecules in all organisms. They can have a broad effect on every aspect of physiology, including embryogenesis, metabolism, and growth and development. Numerous microRNAs have been identified and elucidated to play a key role in cardiovascular diseases, as well as in neurological and autoimmune disorders. This is especially important as microRNA-based tools can be exploited as beneficial therapies for disease treatment and prevention. Sex steroid hormones as well as X-linked genes can have a considerable influence on the regulation of microRNAs. However, there are very few studies highlighting the role of microRNAs in sex biased diseases. This review attempts to summarize differentially regulated microRNAs in males versus females in different diseases and calls for more attention in this underexplored area that should set the basis for more effective therapeutic strategies for sexually dimorphic diseases.

          Related collections

          Most cited references101

          • Record: found
          • Abstract: found
          • Article: not found

          Origins and Mechanisms of miRNAs and siRNAs.

          Over the last decade, approximately 20-30 nucleotide RNA molecules have emerged as critical regulators in the expression and function of eukaryotic genomes. Two primary categories of these small RNAs--short interfering RNAs (siRNAs) and microRNAs (miRNAs)--act in both somatic and germline lineages in a broad range of eukaryotic species to regulate endogenous genes and to defend the genome from invasive nucleic acids. Recent advances have revealed unexpected diversity in their biogenesis pathways and the regulatory mechanisms that they access. Our understanding of siRNA- and miRNA-based regulation has direct implications for fundamental biology as well as disease etiology and treatment.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Origin, biogenesis, and activity of plant microRNAs.

            MicroRNAs (miRNAs) are key posttranscriptional regulators of eukaryotic gene expression. Plants use highly conserved as well as more recently evolved, species-specific miRNAs to control a vast array of biological processes. This Review discusses current advances in our understanding of the origin, biogenesis, and mode of action of plant miRNAs and draws comparisons with their metazoan counterparts.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Breast cancer metastasis: markers and models.

              Breast cancer starts as a local disease, but it can metastasize to the lymph nodes and distant organs. At primary diagnosis, prognostic markers are used to assess whether the transition to systemic disease is likely to have occurred. The prevailing model of metastasis reflects this view--it suggests that metastatic capacity is a late, acquired event in tumorigenesis. Others have proposed the idea that breast cancer is intrinsically a systemic disease. New molecular technologies, such as DNA microarrays, support the idea that metastatic capacity might be an inherent feature of breast tumours. These data have important implications for prognosis prediction and our understanding of metastasis.
                Bookmark

                Author and article information

                Journal
                Biol Sex Differ
                Biol Sex Differ
                Biology of Sex Differences
                BioMed Central
                2042-6410
                2014
                1 February 2014
                : 5
                : 3
                Affiliations
                [1 ]Department of Anesthesiology, Division of Molecular Medicine, and Cardiovascular Research Laboratories, David Geffen School of Medicine, University of California Los Angeles, BH-160CHS, Los Angeles, CA 90095-7115, USA
                Article
                2042-6410-5-3
                10.1186/2042-6410-5-3
                3912347
                24484532
                4a5713b0-76be-4ff0-89c0-be969537d5c1
                Copyright © 2014 Sharma and Eghbali; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 30 November 2013
                : 30 December 2013
                Categories
                Review

                Human biology
                Human biology

                Comments

                Comment on this article