11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Fusing Pruned and Backdoored Models: Optimal Transport-based Data-free Backdoor Mitigation

      Preprint
      , , ,

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Backdoor attacks present a serious security threat to deep neuron networks (DNNs). Although numerous effective defense techniques have been proposed in recent years, they inevitably rely on the availability of either clean or poisoned data. In contrast, data-free defense techniques have evolved slowly and still lag significantly in performance. To address this issue, different from the traditional approach of pruning followed by fine-tuning, we propose a novel data-free defense method named Optimal Transport-based Backdoor Repairing (OTBR) in this work. This method, based on our findings on neuron weight changes (NWCs) of random unlearning, uses optimal transport (OT)-based model fusion to combine the advantages of both pruned and backdoored models. Specifically, we first demonstrate our findings that the NWCs of random unlearning are positively correlated with those of poison unlearning. Based on this observation, we propose a random-unlearning NWC pruning technique to eliminate the backdoor effect and obtain a backdoor-free pruned model. Then, motivated by the OT-based model fusion, we propose the pruned-to-backdoored OT-based fusion technique, which fuses pruned and backdoored models to combine the advantages of both, resulting in a model that demonstrates high clean accuracy and a low attack success rate. To our knowledge, this is the first work to apply OT and model fusion techniques to backdoor defense. Extensive experiments show that our method successfully defends against all seven backdoor attacks across three benchmark datasets, outperforming both state-of-the-art (SOTA) data-free and data-dependent methods. The code implementation and Appendix are provided in the Supplementary Material.

          Related collections

          Author and article information

          Journal
          28 August 2024
          Article
          2408.15861
          f4252087-fede-4f5e-a521-cdf8c3efe308

          http://creativecommons.org/licenses/by/4.0/

          History
          Custom metadata
          cs.CR cs.LG

          Security & Cryptology,Artificial intelligence
          Security & Cryptology, Artificial intelligence

          Comments

          Comment on this article