10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Ablation of Aquaporin-9 Ameliorates the Systemic Inflammatory Response of LPS-Induced Endotoxic Shock in Mouse

      research-article

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Septic shock is the most severe complication of sepsis, being characterized by a systemic inflammatory response following bacterial infection, leading to multiple organ failure and dramatically high mortality. Aquaporin-9 (AQP9), a membrane channel protein mainly expressed in hepatocytes and leukocytes, has been recently associated with inflammatory and infectious responses, thus triggering strong interest as a potential target for reducing septic shock-dependent mortality. Here, we evaluated whether AQP9 contributes to murine systemic inflammation during endotoxic shock. Wild type ( Aqp9 +/+ ; WT) and Aqp9 gene knockout ( Aqp9 −/− ; KO) male mice were submitted to endotoxic shock by i.p. injection of lipopolysaccharide (LPS; 40 mg/kg) and the related survival times were followed during 72 h. The electronic paramagnetic resonance and confocal microscopy were employed to analyze the nitric oxide (NO) and superoxide anion (O 2 ) production, and the expression of inducible NO-synthase (iNOS) and cyclooxigenase-2 (COX-2), respectively, in the liver, kidney, aorta, heart and lung of the mouse specimens. LPS-treated KO mice survived significantly longer than corresponding WT mice, and 25% of the KO mice fully recovered from the endotoxin treatment. The LPS-injected KO mice showed lower inflammatory NO and O 2 productions and reduced iNOS and COX-2 levels through impaired NF-κB p65 activation in the liver, kidney, aorta, and heart as compared to the LPS-treated WT mice. Consistent with these results, the treatment of FaO cells, a rodent hepatoma cell line, with the AQP9 blocker HTS13268 prevented the LPS-induced increase of inflammatory NO and O 2 . A role for AQP9 is suggested in the early acute phase of LPS-induced endotoxic shock involving NF-κB signaling. The modulation of AQP9 expression/function may reveal to be useful in developing novel endotoxemia therapeutics.

          Related collections

          Most cited references73

          • Record: found
          • Abstract: found
          • Article: found

          The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3).

          Definitions of sepsis and septic shock were last revised in 2001. Considerable advances have since been made into the pathobiology (changes in organ function, morphology, cell biology, biochemistry, immunology, and circulation), management, and epidemiology of sepsis, suggesting the need for reexamination.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Epidemiology of severe sepsis

            Severe sepsis is a leading cause of death in the United States and the most common cause of death among critically ill patients in non-coronary intensive care units (ICU). Respiratory tract infections, particularly pneumonia, are the most common site of infection, and associated with the highest mortality. The type of organism causing severe sepsis is an important determinant of outcome, and gram-positive organisms as a cause of sepsis have increased in frequency over time and are now more common than gram-negative infections. Recent studies suggest that acute infections worsen pre-existing chronic diseases or result in new chronic diseases, leading to poor long-term outcomes in acute illness survivors. People of older age, male gender, black race, and preexisting chronic health conditions are particularly prone to develop severe sepsis; hence prevention strategies should be targeted at these vulnerable populations in future studies.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Specific aquaporins facilitate the diffusion of hydrogen peroxide across membranes.

              The metabolism of aerobic organisms continuously produces reactive oxygen species. Although potentially toxic, these compounds also function in signaling. One important feature of signaling compounds is their ability to move between different compartments, e.g. to cross membranes. Here we present evidence that aquaporins can channel hydrogen peroxide (H2O2). Twenty-four aquaporins from plants and mammals were screened in five yeast strains differing in sensitivity toward oxidative stress. Expression of human AQP8 and plant Arabidopsis TIP1;1 and TIP1;2 in yeast decreased growth and survival in the presence of H2O2. Further evidence for aquaporin-mediated H2O2 diffusion was obtained by a fluorescence assay with intact yeast cells using an intracellular reactive oxygen species-sensitive fluorescent dye. Application of silver ions (Ag+), which block aquaporin-mediated water diffusion in a fast kinetics swelling assay, also reversed both the aquaporin-dependent growth repression and the H2O2-induced fluorescence. Our results present the first molecular genetic evidence for the diffusion of H2O2 through specific members of the aquaporin family.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                Cells
                Cells
                cells
                Cells
                MDPI
                2073-4409
                18 February 2021
                February 2021
                : 10
                : 2
                : 435
                Affiliations
                [1 ]INSERM, CNRS, UNIV Nantes, l’institut du Thorax, 44007 Nantes, France
                [2 ]Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari “Aldo Moro”, 70125 Bari, Italy; annapatrizia.gena@ 123456uniba.it
                [3 ]Apoglyx AB, c/o Anyo AB, Ideon Science Park, 22370 Lund, Sweden; michael.rutzler@ 123456apoglyx.com
                [4 ]Division of Biochemistry and Structural Biology, Department of Chemistry, Lund University, 22100 Lund, Sweden
                Author notes
                Author information
                https://orcid.org/0000-0002-2153-4357
                https://orcid.org/0000-0001-5597-8880
                https://orcid.org/0000-0003-4666-9546
                Article
                cells-10-00435
                10.3390/cells10020435
                7922179
                57e88dea-7207-45e9-a361-14a6e814f5ee
                © 2021 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 19 December 2020
                : 15 February 2021
                Categories
                Article

                membrane transport,hydrogen peroxide,peroxiporins,aquaglyceroporins,lps,sepsis,inflammation,nitric oxide,superoxide anion,nf-κb pathway,redox signaling,drug targets

                Comments

                Comment on this article