13
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The association between genetic polymorphism of glutathione peroxidase 1 (rs1050450) and keratoconus in a Turkish population Translated title: A associação entre o polimorfismo genético da glutationa-peroxidase 1 (rs1050450) e pacientes com ceratocone em uma população turca

      research-article

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          ABSTRACT Purpose: To investigate the potential associations between keratoconus and catalase rs1001179, superoxide dismutase 2 rs4880, and glutathione peroxidase 1 rs1050450 gene polymorphisms in a Turkish population. Methods: The study group included 121 unrelated keratoconus patients and 94 unrelated healthy controls. Blood samples (200 ml) were collected from all patients and controls to isolate genomic DNA. Genotyping was performed to identify rs1001179, rs4880, and rs1050450 using real-time polymerase chain reaction (PCR). Genotype and allele frequencies were calculated; their associations with keratoconus risk were assayed, and the association with keratoconus risk and demographic factors was examined. Results: Glutathione peroxidase 1 rs1050450 polymorphism was present in 41% cases compared with 29% controls (OR=1.66; 95% CI=1.11-2.50; p=0.014). No association was observed between catalase rs1001179 and SOD2 rs4880 polymorphisms and keratoconus (for all, p>0.05). Conclusions: This study evaluated possible relationships between rs1050450, rs1001179, and rs4880 polymorphisms and keratoconus susceptibility. We found a possible association between glutathione peroxidase 1 rs1050450 polymorphism and an increased risk of keratoconus. However, the genotype and allele frequencies were identical in the catalase rs1001179 and superoxide dismutase 2 rs4880 polymorphisms. Further studies are needed to analyze the effect of such variations in identifying keratoconus susceptibility.

          Translated abstract

          RESUMO Objetivo: Investigar as possíveis associações entre o ceratocone e os polimorfismos rs1001179 da catalase, rs4880 da superóxido-dismutase 2 e rs1050450 da glutationa-peroxidase 1 rs1050450 em uma população turca. Métodos: O grupo de estudo incluiu 121 pacientes com ceratocone não relacionados e 94 controles saudáveis também sem pa rentesco. Amostra de sangue (200 mL) foram coletadas de todos os pacientes e controle para isolar o DNA genômico. A genotipagem foi realizada para identificar rs1001179, rs4880 e rs1050450 utilizando a reação em cadeia da polimerase (PCR) em tempo real. As frequências de genótipos e alelos foram calculadas, suas associações com o risco de ceratocone foram avaliadas, e a associação com risco de ceratocone e fatores demográficos foi examinada. Resultados: O polimorfismo da glutationa-peroxidase 1 rs1050450 estava presente em 41% dos casos, comparado com 29% dos controles (OR=1,66, IC 95%=1,11-2,50; p=0,014). Não foi observada associação entre o ceratocone e os polimorfismos rs1001179 e SOD2 rs4880 da catalase (para todos, p>0,05). Conclusões: Este estudo avaliou possíveis relações entre os polimorfismos rs1001179, rs4880 e suscetibilidade a cerato cone. Encontramos uma possível associação entre po limorfis mo da glutationa-peroxidase 1 rs1050450 e um risco aumentado de ceratocone. No entanto, o genótipo e as frequências alélicas foram idênticas nos polimorfismos rs1001179 da catalase e superóxido-dismutase 2 rs4880. Mais estudos são necessários para esclarecer o efeito dessas va riações na detecção da sus cetibilidade ao ceratocone.

          Related collections

          Most cited references25

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          The Genetic and Environmental Factors for Keratoconus

          Keratoconus (KC) is the most common cornea ectatic disorder. It is characterized by a cone-shaped thin cornea leading to myopia, irregular astigmatism, and vision impairment. It affects all ethnic groups and both genders. Both environmental and genetic factors may contribute to its pathogenesis. This review is to summarize the current research development in KC epidemiology and genetic etiology. Environmental factors include but are not limited to eye rubbing, atopy, sun exposure, and geography. Genetic discoveries have been reviewed with evidence from family-based linkage analysis and fine mapping in linkage region, genome-wide association studies, and candidate genes analyses. A number of genes have been discovered at a relatively rapid pace. The detailed molecular mechanism underlying KC pathogenesis will significantly advance our understanding of KC and promote the development of potential therapies.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Evidence of oxidative stress in human corneal diseases.

            This study localized malondialdehyde (MDA, a toxic byproduct of lipid peroxidation), nitrotyrosine [NT, a cytotoxic byproduct of nitric oxide (NO)], and nitric oxide synthase isomers (NOS) in normal and diseased human corneas. Normal corneas (n=11) and those with clinical and histopathological diagnoses of keratoconus (n=26), bullous keratopathy (n=17), and Fuchs' endothelial dystrophy (n=12) were examined with antibodies specific for MDA, NT, eNOS (constitutive NOS), and iNOS (inducible NOS). Normal corneas showed little or no staining for MDA, NT, or iNOS, whereas eNOS was detected in the epithelium and endothelium. MDA was present in all disease groups, with each group displaying a distinct pattern of staining. NT was detected in all keratoconus and approximately one half of Fuchs' dystrophy corneas. iNOS and eNOS were evident in all the diseased corneas. Keratoconus corneas showed evidence of oxidative damage from cytotoxic byproducts generated by lipid peroxidation and the NO pathway. Bullous keratopathy corneas displayed byproducts of lipid peroxidation but not peroxynitrite (MDA but not NT). Conversely, Fuchs' dystrophy corneas displayed byproducts of peroxynitrite with little lipid peroxidation (NT > MDA). These data suggest that oxidative damage occurs within each group of diseased corneas. However, each disease exhibits a distinctive profile, with only keratoconus showing prominent staining for both nitrotyrosine and MDA. These results suggest that keratoconus corneas do not process reactive oxygen species in a normal manner, which may play a major role in the pathogenesis of this disease.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Increased levels of catalase and cathepsin V/L2 but decreased TIMP-1 in keratoconus corneas: evidence that oxidative stress plays a role in this disorder.

              The mRNA levels of antioxidant enzymes, matrix metalloproteinases, cathepsin V/L2, and tissue inhibitor of matrix metalloproteinases (TIMPs) were determined in keratoconus and normal corneas. Protein levels or enzyme activities were analyzed when RNA levels were different. A total of 25 physiologic (normal) and 32 keratoconus corneas were studied. mRNAs were analyzed by semiquantitative reverse transcription-polymerase chain reaction and Southern blot analysis. Proteins were assessed by immunohistochemistry and/or Western blot analysis. Catalase activity was measured in corneal extracts. Antioxidant enzymes examined were catalase, superoxide dismutase (SOD)-1, SOD3, glutathione reductase, glutathione S-transferase and aldehyde dehydrogenase 3A1. Degradative enzymes examined were cathepsin V/L2 and matrix metalloproteinase (MMP)-1, -2, -7, -9, and -14. Tissue inhibitor of matrix metalloproteinase (TIMP)-1, -2, and -3 were also examined. Keratoconus corneas exhibited a 2.2-fold increase of catalase mRNA level (P < 0.01) and 1.8-fold of enzyme activity (P < 0.03); a 1.5-fold increase of cathepsin V/L2 mRNA (P < 0.03) and abnormal protein distribution; and a 1.8-fold decrease of TIMP-1 mRNA (P < 0.05) and 2.8-fold decrease of protein (P < 0.0001) compared with normal (physiologic) corneas. RNA levels for other antioxidant and degradative enzymes were similar between normal and keratoconus corneas. Keratoconus corneas have elevated levels of cathepsins V/L2, -B, and -G, which can stimulate hydrogen peroxide production, which, in turn, can upregulate catalase, an antioxidant enzyme. In addition, decreased TIMP-1 and increased cathepsin V/L2 levels may play a role in the matrix degradation that is a hallmark of keratoconus corneas. The findings support the hypothesis that keratoconus corneas undergo oxidative stress and tissue degradation.
                Bookmark

                Author and article information

                Contributors
                Role: ND
                Role: ND
                Role: ND
                Role: ND
                Role: ND
                Journal
                abo
                Arquivos Brasileiros de Oftalmologia
                Arq. Bras. Oftalmol.
                Conselho Brasileiro de Oftalmologia (São Paulo, SP, Brazil )
                0004-2749
                1678-2925
                November 2019
                : 82
                : 6
                : 501-506
                Affiliations
                [1] Ankara orgnameERA Eye Center orgdiv1Department of Ophthalmology Turkey
                [2] orgnameGulhane Military Medical Academy orgdiv1Department of Ophthalmology Turkey
                Article
                S0004-27492019000600501
                10.5935/0004-2749.20190102
                93d740e0-9d04-4197-827d-c1f108a9ccbf

                This work is licensed under a Creative Commons Attribution 4.0 International License.

                History
                : 05 February 2019
                : 20 June 2017
                Page count
                Figures: 0, Tables: 0, Equations: 0, References: 30, Pages: 6
                Product

                SciELO Brazil

                Categories
                Original Articles

                Su peróxido dismutase,polimorfismo genético,Keratoconus,Glutathione peroxidase,Glutationa peroxidase,Ceratocone,Polymorphism, genetic,Superoxide dismutase,Catalase

                Comments

                Comment on this article