47
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Bortezomib antagonizes microtubule-interfering drug-induced apoptosis by inhibiting G2/M transition and MCL-1 degradation

      research-article

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Inhibition of the proteasome is considered as a promising strategy to sensitize cancer cells to apoptosis. Recently, we demonstrated that the proteasome inhibitor Bortezomib primes neuroblastoma cells to TRAIL-induced apoptosis. In the present study, we investigated whether Bortezomib increases chemosensitivity of neuroblastoma cells. Unexpectedly, we discover an antagonistic interaction of Bortezomib and microtubule-interfering drugs. Bortezomib significantly attenuates the loss of cell viability and induction of apoptosis on treatment with Taxol and different vinca alkaloids but not with other chemotherapeutics, that is, Doxorubicin and Cisplatinum. Importantly, Bortezomib inhibits G2/M transition by inhibiting proteasomal degradation of cell cycle regulatory proteins such as p21, thereby preventing cells to enter mitosis, the cell cycle phase in which they are most vulnerable to antitubulin chemotherapeutics. Consequently, Bortezomib counteracts Taxol-induced mitotic arrest and polyploidy, as shown by reduced expression of PLK1 and phosphorylated histone H3. In addition, Bortezomib antagonizes Taxol-mediated degradation of MCL-1 during mitotic arrest by preventing cells to enter mitosis and by inhibiting the proteasome. Downregulation of MCL-1 is critically required for Taxol-induced apoptosis, as overexpression of a phosphomutant MCL-1 variant, which is resistant to degradation, significantly diminishes Taxol-triggered apoptosis. Vice versa, attenuation of Bortezomib-mediated accumulation of MCL-1 by knockdown of MCL-1 significantly enhances Taxol/Bortezomib-induced apoptosis. Thus, Bortezomib rescues Taxol-induced apoptosis by inhibiting G2/M transition and mitigating MCL-1 degradation. The identification of this antagonistic interaction of Bortezomib and microtubule-targeted drugs has important implications for the design of Bortezomib-based combination therapies.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: found
          • Article: not found

          Multifaceted polo-like kinases: drug targets and antitargets for cancer therapy.

          The polo-like kinase 1 (PLK1) acts in concert with cyclin-dependent kinase 1-cyclin B1 and Aurora kinases to orchestrate a wide range of critical cell cycle events. Because PLK1 has been preclinically validated as a cancer target, small-molecule inhibitors of PLK1 have become attractive candidates for anticancer drug development. Although the roles of the closely related PLK2, PLK3 and PLK4 in cancer are less well understood, there is evidence showing that PLK2 and PLK3 act as tumour suppressors through their functions in the p53 signalling network, which guards the cell against various stress signals. In this article, recent insights into the biology of PLKs will be reviewed, with an emphasis on their role in malignant transformation, and progress in the development of small-molecule PLK1 inhibitors will be examined.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Phosphorylation of Mcl-1 by CDK1-cyclin B1 initiates its Cdc20-dependent destruction during mitotic arrest.

            The balance between cell cycle progression and apoptosis is important for both surveillance against genomic defects and responses to drugs that arrest the cell cycle. In this report, we show that the level of the human anti-apoptotic protein Mcl-1 is regulated during the cell cycle and peaks at mitosis. Mcl-1 is phosphorylated at two sites in mitosis, Ser64 and Thr92. Phosphorylation of Thr92 by cyclin-dependent kinase 1 (CDK1)-cyclin B1 initiates degradation of Mcl-1 in cells arrested in mitosis by microtubule poisons. Mcl-1 destruction during mitotic arrest requires proteasome activity and is dependent on Cdc20/Fizzy, which mediates recognition of mitotic substrates by the anaphase-promoting complex/cyclosome (APC/C) E3 ubiquitin ligase. Stabilisation of Mcl-1 during mitotic arrest by mutation of either Thr92 or a D-box destruction motif inhibits the induction of apoptosis by microtubule poisons. Thus, phosphorylation of Mcl-1 by CDK1-cyclin B1 and its APC/C(Cdc20)-mediated destruction initiates apoptosis if a cell fails to resolve mitosis. Regulation of apoptosis, therefore, is linked intrinsically to progression through mitosis and is governed by a temporal mechanism that distinguishes between normal mitosis and prolonged mitotic arrest.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Histone H3 phosphorylation and cell division.

              Histone H3 is specifically phosphorylated during both mitosis and meiosis in patterns that are specifically coordinated in both space and time. Histone H3 phosphorylation may initiate at different phases of the cell division in different organisms, but metaphase chromosomes are always found to be heavily phosphorylated. Upon exit of mitosis/meiosis a global dephosphorylation of H3 takes place. Potential candidates for H3 kinases are described and their hypothetical mechanism of action on highly condensed chromatin templates is discussed. In addition, a novel hypothesis for the role of histone H3 phosphorylation during cell division is proposed. This hypothesis, termed the 'ready production label' model, explains the results in the literature and suggests that phosphorylation of histone H3 is a part of a complex signaling mechanism.
                Bookmark

                Author and article information

                Journal
                Cell Death Dis
                Cell Death Dis
                Cell Death & Disease
                Nature Publishing Group
                2041-4889
                November 2013
                21 November 2013
                1 November 2013
                : 4
                : 11
                : e925
                Affiliations
                [1 ]Institute for Experimental Cancer Research in Pediatrics, Goethe-University Frankfurt , Komturstr. 3a, Frankfurt, Germany
                Author notes
                [* ]Institute for Experimental Cancer Research in Pediatrics, Goethe-University Frankfurt , Komturstr. 3a, Frankfurt 60528, Germany. Tel: +49 69 67866557; Fax: +49 69 6786659157; E-mail: simone.fulda@ 123456kgu.de
                Article
                cddis2013440
                10.1038/cddis.2013.440
                3847318
                24263099
                ac6dab38-64aa-469d-99d5-047df3dead46
                Copyright © 2013 Macmillan Publishers Limited

                This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/

                History
                : 10 July 2013
                : 17 September 2013
                : 01 October 2013
                Categories
                Original Article

                Cell biology
                apoptosis,neuroblastoma,cell death,bortezomib,proteasome inhibitor
                Cell biology
                apoptosis, neuroblastoma, cell death, bortezomib, proteasome inhibitor

                Comments

                Comment on this article