13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Bibliometric and visualized analysis of metal-organic frameworks in biomedical application

      research-article

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background: Metal-organic frameworks (MOFs) are hybrid materials composed of metal ions or clusters and organic ligands that spontaneously assemble via coordination bonds to create intramolecular pores, which have recently been widely used in biomedicine due to their porosity, structural, and functional diversity. They are used in biomedical applications, including biosensing, drug delivery, bioimaging, and antimicrobial activities. Our study aims to provide scholars with a comprehensive overview of the research situations, trends, and hotspots in biomedical applications of MOFs through a bibliometric analysis of publications from 2002 to 2022.

          Methods: On 19 January 2023, the Web of Science Core Collection was searched to review and analyze MOFs applications in the biomedical field. A total of 3,408 studies published between 2002 and 2022 were retrieved and examined, with information such as publication year, country/region, institution, author, journal, references, and keywords. Research hotspots were extracted and analyzed using the Bibliometrix R-package, VOSviewer, and CiteSpace.

          Results: We showed that researchers from 72 countries published articles on MOFs in biomedical applications, with China producing the most publications. The Chinese Academy of Science was the most prolific contributor to these publications among 2,209 institutions that made contributions. Reference co-citation analysis classifies references into 8 clusters: synergistic cancer therapy, efficient photodynamic therapy, metal-organic framework encapsulation, selective fluorescence, luminescent probes, drug delivery, enhanced photodynamic therapy, and metal-organic framework-based nanozymes. Keyword co-occurrence analysis divided keywords into 6 clusters: biosensors, photodynamic therapy, drug delivery, cancer therapy and bioimaging, nanoparticles, and antibacterial applications. Research frontier keywords were represented by chemodynamic therapy (2020–2022) and hydrogen peroxide (2020–2022).

          Conclusion: Using bibliometric methods and manual review, this review provides a systematic overview of research on MOFs in biomedical applications, filling an existing gap. The burst keyword analysis revealed that chemodynamic therapy and hydrogen peroxide are the prominent research frontiers and hot spots. MOFs can catalyze Fenton or Fenton-like reactions to generate hydroxyl radicals, making them promising materials for chemodynamic therapy. MOF-based biosensors can detect hydrogen peroxide in various biological samples for diagnosing diseases. MOFs have a wide range of research prospects for biomedical applications.

          Related collections

          Most cited references114

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Software survey: VOSviewer, a computer program for bibliometric mapping

          We present VOSviewer, a freely available computer program that we have developed for constructing and viewing bibliometric maps. Unlike most computer programs that are used for bibliometric mapping, VOSviewer pays special attention to the graphical representation of bibliometric maps. The functionality of VOSviewer is especially useful for displaying large bibliometric maps in an easy-to-interpret way. The paper consists of three parts. In the first part, an overview of VOSviewer’s functionality for displaying bibliometric maps is provided. In the second part, the technical implementation of specific parts of the program is discussed. Finally, in the third part, VOSviewer’s ability to handle large maps is demonstrated by using the program to construct and display a co-citation map of 5,000 major scientific journals.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The chemistry and applications of metal-organic frameworks.

            Crystalline metal-organic frameworks (MOFs) are formed by reticular synthesis, which creates strong bonds between inorganic and organic units. Careful selection of MOF constituents can yield crystals of ultrahigh porosity and high thermal and chemical stability. These characteristics allow the interior of MOFs to be chemically altered for use in gas separation, gas storage, and catalysis, among other applications. The precision commonly exercised in their chemical modification and the ability to expand their metrics without changing the underlying topology have not been achieved with other solids. MOFs whose chemical composition and shape of building units can be multiply varied within a particular structure already exist and may lead to materials that offer a synergistic combination of properties.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              bibliometrix : An R-tool for comprehensive science mapping analysis

                Bookmark

                Author and article information

                Contributors
                Journal
                Front Bioeng Biotechnol
                Front Bioeng Biotechnol
                Front. Bioeng. Biotechnol.
                Frontiers in Bioengineering and Biotechnology
                Frontiers Media S.A.
                2296-4185
                10 May 2023
                2023
                : 11
                : 1190654
                Affiliations
                [1] 1 The VIP Department , School and Hospital of Stomatology , China Medical University , Shenyang, China
                [2] 2 Department of Physiology , School of Life Sciences , China Medical University , Shenyang, China
                [3] 3 Department of Computer , School of Intelligent Medicine , China Medical University , Shenyang, China
                Author notes

                Edited by: Bruno Fonseca-Santos, Federal University of Bahia (UFBA), Brazil

                Reviewed by: Xiaoli Cai, Wuhan University of Science and Technology, China

                Guangyao Zhang, Qingdao University, China

                *Correspondence: Zhenhua Wang, wzhcmusl@ 123456163.com ; Zhichang Zhang, zczhang@ 123456cmu.edu.cn ; Zhongti Zhang, ztzhang@ 123456cmu.edu.cn
                Article
                1190654
                10.3389/fbioe.2023.1190654
                10206306
                2f607a63-e41a-43f8-aeb8-5b5af6f6dca0
                Copyright © 2023 Yu, Xu, Wang, Zhang and Zhang.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 21 March 2023
                : 28 April 2023
                Funding
                ZW received funding for this study through the grant 2022JH6/100100058 from the Central Guidance on Local Science and Technology Development Fund of Liaoning Province.
                Categories
                Bioengineering and Biotechnology
                Original Research
                Custom metadata
                Biomaterials

                metal-organic frameworks (mofs),biomedical applications,biomaterial,bibliometrics,data visualization

                Comments

                Comment on this article