2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Ovulation timing and conception risk after automated activity monitoring in lactating dairy cows

      , , ,
      Journal of Dairy Science
      American Dairy Science Association

      Read this article at

      ScienceOpenPublisher
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references22

          • Record: found
          • Abstract: found
          • Article: not found

          Principal descriptors of body condition score in Holstein cows.

          The objective of this study was to assess objectively the ability of observers to assess body condition of dairy cows. Four observers independently assigned a body condition score (five-point scale, .25 increments) and described the appearance of seven body regions of 225 Holstein cows. Areas described were the thurl region, ischial and ileal tuberosities, ilio-sacral and ischio-coccygeal ligaments, transverse processes of the lumbar vertebrae, and spinous processes of the lumbar vertebrae. An absolute body condition score was designated for each cow based on the modal body condition score for all observers. If there was no modal body condition score, the mean score was used for the absolute body condition score. Statistical analysis of principal components was used to examine the relationship between body region description and absolute body condition score. Descriptions of body regions were highly correlated across all absolute body condition scores. Four principal component vectors explained 83.6% of the variation of the body region correlation matrix. The first principal latent vector accounted for 55% of the variation and was uniformly correlated with all body regions. Analysis of variance of first principal latent vector as the dependent variable and absolute body condition score as the class variable indicated that body condition could be separated into .25 units between 2.5 and 4.0, inclusively. Below 2.5 and > 4.0, body condition could only be separated by .5 units. Distinct changes in specific body regions were associated with change in absolute body condition score. Observers agreed with the absolute score 58.1% of the time, deviating by .25 units 32.6% of the time. A body condition score can be given to a cow based on principal descriptors of specific body regions between 2.5 and 4.0 by .25 units.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            When is a cow in estrus? Clinical and practical aspects.

            Good detection of estrus is critically important in dairy husbandry. Incorrect detection of estrus is related to loss of profit due to extended calving intervals, milk loss, veterinary costs, etc. Detection of estrus remains a major problem despites enormous progress in the knowledge of reproductive physiology of the cow and in development of estrus detection aids. To achieve good estrus detection, many factors have to be taken into account. On one hand a cow has to express estrus and on the other hand the farmer has to detect it. Combined action of several hormones causes physiological changes that lead to ovulation and an environment in the uterus that allows sperm to fertilize the egg. Besides these internal actions, a number of external changes can be observed. When using visual observations, time of the day and time spend on observation have a great impact on detection rates. Many devices are available to aid in estrus detection, such as pedometers, mount devices, temperature, and hormone measurements. Expression of estrus can be influenced by many factors. Heritability, number of days postpartum, lactation number, milk production, and health are known to influence estrus expression. Environmental factors like nutrition, season, housing, herd size, etc. also play a role in estrus expression. To evaluate estrus detection, record keeping is very important; a number of formulas can be used to assess detection efficiency. Besides the farmer, the veterinarian and inseminator can play an important role in estrus confirmation and good insemination strategy. In the end, the time of ovulation and the age of the egg at sperm penetration is critical for conception. Therefore, emphasis in research needs to be on the timing of insemination relative to ovulation, and thus on the detection of ovulation.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Automation of oestrus detection in dairy cows: a review

                Bookmark

                Author and article information

                Journal
                Journal of Dairy Science
                Journal of Dairy Science
                American Dairy Science Association
                00220302
                July 2014
                July 2014
                : 97
                : 7
                : 4296-4308
                Article
                10.3168/jds.2013-7873
                f92942d1-7cad-41e6-ab01-6c10eb498fe3
                © 2014

                https://www.elsevier.com/tdm/userlicense/1.0/

                http://www.elsevier.com/open-access/userlicense/1.0/

                History

                Comments

                Comment on this article