26
views
0
recommends
+1 Recommend
2 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      VV116 versus Nirmatrelvir–Ritonavir for Oral Treatment of Covid-19

      Read this article at

      ScienceOpenPublisher
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <div class="section"> <a class="named-anchor" id="sc_a1"> <!-- named anchor --> </a> <h5 class="section-title" id="d819315e269">Background</h5> <p id="d819315e271">Nirmatrelvir–ritonavir has been authorized for emergency use by many countries for the treatment of coronavirus disease 2019 (Covid-19). However, the supply falls short of the global demand, which creates a need for more options. VV116 is an oral antiviral agent with potent activity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). </p> </div><div class="section"> <a class="named-anchor" id="sc_a2"> <!-- named anchor --> </a> <h5 class="section-title" id="d819315e274">Methods</h5> <p id="d819315e276">We conducted a phase 3, noninferiority, observer-blinded, randomized trial during the outbreak caused by the B.1.1.529 (omicron) variant of SARS-CoV-2. Symptomatic adults with mild-to-moderate Covid-19 with a high risk of progression were assigned to receive a 5-day course of either VV116 or nirmatrelvir–ritonavir. The primary end point was the time to sustained clinical recovery through day 28. Sustained clinical recovery was defined as the alleviation of all Covid-19–related target symptoms to a total score of 0 or 1 for the sum of each symptom (on a scale from 0 to 3, with higher scores indicating greater severity; total scores on the 11-item scale range from 0 to 33) for 2 consecutive days. A lower boundary of the two-sided 95% confidence interval for the hazard ratio of more than 0.8 was considered to indicate noninferiority (with a hazard ratio of &gt;1 indicating a shorter time to sustained clinical recovery with VV116 than with nirmatrelvir–ritonavir). </p> </div><div class="section"> <a class="named-anchor" id="sc_a3"> <!-- named anchor --> </a> <h5 class="section-title" id="d819315e279">Results</h5> <p id="d819315e281">A total of 822 participants underwent randomization, and 771 received VV116 (384 participants) or nirmatrelvir–ritonavir (387 participants). The noninferiority of VV116 to nirmatrelvir–ritonavir with respect to the time to sustained clinical recovery was established in the primary analysis (hazard ratio, 1.17; 95% confidence interval [CI], 1.01 to 1.35) and was maintained in the final analysis (median, 4 days with VV116 and 5 days with nirmatrelvir–ritonavir; hazard ratio, 1.17; 95% CI, 1.02 to 1.36). In the final analysis, the time to sustained symptom resolution (score of 0 for each of the 11 Covid-19–related target symptoms for 2 consecutive days) and to a first negative SARS-CoV-2 test did not differ substantially between the two groups. No participants in either group had died or had had progression to severe Covid-19 by day 28. The incidence of adverse events was lower in the VV116 group than in the nirmatrelvir–ritonavir group (67.4% vs. 77.3%). </p> </div><div class="section"> <a class="named-anchor" id="sc_a4"> <!-- named anchor --> </a> <h5 class="section-title" id="d819315e284">Conclusions</h5> <p id="d819315e286">Among adults with mild-to-moderate Covid-19 who were at risk for progression, VV116 was noninferior to nirmatrelvir–ritonavir with respect to the time to sustained clinical recovery, with fewer safety concerns. (Funded by Vigonvita Life Sciences and others; ClinicalTrials.gov number, <a data-untrusted="" href="http://clinicaltrials.gov/show/NCT05341609" id="d819315e288" target="xrefwindow">NCT05341609</a>; Chinese Clinical Trial Registry number, ChiCTR2200057856.) </p> </div>

          Related collections

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: not found

          Oral Nirmatrelvir for High-Risk, Nonhospitalized Adults with Covid-19

          Background Nirmatrelvir is an orally administered severe acute respiratory syndrome coronavirus 2 main protease (M pro ) inhibitor with potent pan–human-coronavirus activity in vitro. Methods We conducted a phase 2–3 double-blind, randomized, controlled trial in which symptomatic, unvaccinated, nonhospitalized adults at high risk for progression to severe coronavirus disease 2019 (Covid-19) were assigned in a 1:1 ratio to receive either 300 mg of nirmatrelvir plus 100 mg of ritonavir (a pharmacokinetic enhancer) or placebo every 12 hours for 5 days. Covid-19–related hospitalization or death from any cause through day 28, viral load, and safety were evaluated. Results A total of 2246 patients underwent randomization; 1120 patients received nirmatrelvir plus ritonavir (nirmatrelvir group) and 1126 received placebo (placebo group). In the planned interim analysis of patients treated within 3 days after symptom onset (modified intention-to treat population, comprising 774 of the 1361 patients in the full analysis population), the incidence of Covid-19–related hospitalization or death by day 28 was lower in the nirmatrelvir group than in the placebo group by 6.32 percentage points (95% confidence interval [CI], −9.04 to −3.59; P<0.001; relative risk reduction, 89.1%); the incidence was 0.77% (3 of 389 patients) in the nirmatrelvir group, with 0 deaths, as compared with 7.01% (27 of 385 patients) in the placebo group, with 7 deaths. Efficacy was maintained in the final analysis involving the 1379 patients in the modified intention-to-treat population, with a difference of −5.81 percentage points (95% CI, −7.78 to −3.84; P<0.001; relative risk reduction, 88.9%). All 13 deaths occurred in the placebo group. The viral load was lower with nirmaltrelvir plus ritonavir than with placebo at day 5 of treatment, with an adjusted mean difference of −0.868 log 10 copies per milliliter when treatment was initiated within 3 days after the onset of symptoms. The incidence of adverse events that emerged during the treatment period was similar in the two groups (any adverse event, 22.6% with nirmatrelvir plus ritonavir vs. 23.9% with placebo; serious adverse events, 1.6% vs. 6.6%; and adverse events leading to discontinuation of the drugs or placebo, 2.1% vs. 4.2%). Dysgeusia (5.6% vs. 0.3%) and diarrhea (3.1% vs. 1.6%) occurred more frequently with nirmatrelvir plus ritonavir than with placebo. Conclusions Treatment of symptomatic Covid-19 with nirmatrelvir plus ritonavir resulted in a risk of progression to severe Covid-19 that was 89% lower than the risk with placebo, without evident safety concerns. (Supported by Pfizer; ClinicalTrials.gov number, NCT04960202 .)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Omicron escapes the majority of existing SARS-CoV-2 neutralizing antibodies

            The SARS-CoV-2 B.1.1.529 (Omicron) variant contains 15 mutations of the receptor-binding domain (RBD). How Omicron evades RBD-targeted neutralizing antibodies requires immediate investigation. Here we use high-throughput yeast display screening 1,2 to determine the profiles of RBD escaping mutations for 247 human anti-RBD neutralizing antibodies and show that the neutralizing antibodies can be classified by unsupervised clustering into six epitope groups (A–F)—a grouping that is highly concordant with knowledge-based structural classifications 3–5 . Various single mutations of Omicron can impair neutralizing antibodies of different epitope groups. Specifically, neutralizing antibodies in groups A–D, the epitopes of which overlap with the ACE2-binding motif, are largely escaped by K417N, G446S, E484A and Q493R. Antibodies in group E (for example, S309) 6 and group F (for example, CR3022) 7 , which often exhibit broad sarbecovirus neutralizing activity, are less affected by Omicron, but a subset of neutralizing antibodies are still escaped by G339D, N440K and S371L. Furthermore, Omicron pseudovirus neutralization showed that neutralizing antibodies that sustained single mutations could also be escaped, owing to multiple synergetic mutations on their epitopes. In total, over 85% of the tested neutralizing antibodies were escaped by Omicron. With regard to neutralizing-antibody-based drugs, the neutralization potency of LY-CoV016, LY-CoV555, REGN10933, REGN10987, AZD1061, AZD8895 and BRII-196 was greatly undermined by Omicron, whereas VIR-7831 and DXP-604 still functioned at a reduced efficacy. Together, our data suggest that infection with Omicron would result in considerable humoral immune evasion, and that neutralizing antibodies targeting the sarbecovirus conserved region will remain most effective. Our results inform the development of antibody-based drugs and vaccines against Omicron and future variants.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Rapid epidemic expansion of the SARS-CoV-2 Omicron variant in southern Africa

              The SARS-CoV-2 epidemic in southern Africa has been characterized by three distinct waves. The first was associated with a mix of SARS-CoV-2 lineages, while the second and third waves were driven by the Beta (B.1.351) and Delta (B.1.617.2) variants, respectively 1–3 . In November 2021, genomic surveillance teams in South Africa and Botswana detected a new SARS-CoV-2 variant associated with a rapid resurgence of infections in Gauteng province, South Africa. Within three days of the first genome being uploaded, it was designated a variant of concern (Omicron, B.1.1.529) by the World Health Organization and, within three weeks, had been identified in 87 countries. The Omicron variant is exceptional for carrying over 30 mutations in the spike glycoprotein, which are predicted to influence antibody neutralization and spike function 4 . Here we describe the genomic profile and early transmission dynamics of Omicron, highlighting the rapid spread in regions with high levels of population immunity.
                Bookmark

                Author and article information

                Contributors
                Journal
                New England Journal of Medicine
                N Engl J Med
                Massachusetts Medical Society
                0028-4793
                1533-4406
                December 28 2022
                Affiliations
                [1 ]From the Department of Infectious Diseases, Shanghai Institute of Virology (Z. Cao, H.G., W.W., Q.X.), the Department of Emergency Medicine, Shanghai Innovation Center for Digital Medicine (W.G.), the Clinical Research Center, Shanghai National Center for Translational Medicine, State Key Laboratory of Medical Genomics (P.C., Y.X.), the Departments of General Surgery (Y.J., Z.S., Y.S., R.Z.) and Gastroenterology (J.S.), the Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine...
                Article
                10.1056/NEJMoa2208822
                7f64bfc9-7190-4851-91fb-890b0f801cb0
                © 2022

                http://www.nejmgroup.org/legal/terms-of-use.htm

                History

                Comments

                Comment on this article